Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_2_a0, author = {Tagade, P. M. and Choi, H. L.}, title = {A dynamic bi-orthogonal field equation approach to efficient {Bayesian} inversion}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {229--243}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a0/} }
TY - JOUR AU - Tagade, P. M. AU - Choi, H. L. TI - A dynamic bi-orthogonal field equation approach to efficient Bayesian inversion JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 229 EP - 243 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a0/ LA - en ID - IJAMCS_2017_27_2_a0 ER -
%0 Journal Article %A Tagade, P. M. %A Choi, H. L. %T A dynamic bi-orthogonal field equation approach to efficient Bayesian inversion %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 229-243 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a0/ %G en %F IJAMCS_2017_27_2_a0
Tagade, P. M.; Choi, H. L. A dynamic bi-orthogonal field equation approach to efficient Bayesian inversion. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 2, pp. 229-243. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a0/
[1] Bayarri,M., Berger, J., Paulo, R., Sacks, J., Cafeo, J., Cavendish, J., Lin, C. and Tu, J. (2007). A framework for validation of computer models, Technometrics 49(2): 138–153.
[2] Besag, J., Green, P., Higdon, D. and Mengersen, K. (1995). Bayesian computation and stochastic systems, Statistical Science 10(1): 3–41.
[3] Bieri, M. and Schwab, C. (2009). Sparse high order FEM for elliptic sPDEs, Computer Methods in Applied Mechanics and Engineering 198(13–14): 1149–1170.
[4] Bortz, A., Kalos, M. and Lebowitz, J. (1975). A new algorithm for Monte Carlo simulation in Ising spin systems, Journal of Computational Physics 17(1): 10–18.
[5] Cai, B., Meyer, R. and Perron, F. (2008). Metropolis–Hastings algorithms with adaptive proposals, Statistics and Computing 18(4): 421–433.
[6] Cameron, R. and Martin, W. (1947). The orthogonal development of non-linear functionals in series of Fourier–Hermite functionals, The Annals of Mathematics 48(2): 385–392.
[7] Cheng, M., Hou, T. and Zhang, Z. (2013a). A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations. I: Derivation and algorithms, Journal of Computational Physics 242(1): 843–868.
[8] Cheng, M., Hou, T. and Zhang, Z. (2013b). A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations. II: Adaptivity and generalizations, Journal of Computational Physics 242(1): 753–776.
[9] Cotter, S., Dashti, M., Robinson, J. and Stuart, A. (2012). Variational data assimilation using targeted random walks, International Journal for Numerical Methods in Fluids 68(4).
[10] Cotter, S., Roberts, G., Stuart, A. and White, D. (2013). MCMC methods for functions: Modifying old algorithms to make them faster, Statistical Science 28(3): 424–446.
[11] Dumbser, M. and Munz, C.-D. (2007). On source terms and boundary conditions using arbitrary high order discontinuous Galerkin schemes, International Journal of Applied Mathematics and Computer Science 17(3): 297–310, DOI: 10.2478/v10006-007-0024-1.
[12] Gamerman, D. and Lopes, H. (2006). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Chapman and Hall/CRC, Boca Raton, FL.
[13] Ghanem, R. and Red-Horse, J. (1999). Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach, Physica D 133(1–4): 137–144.
[14] Ghanem, R. and Spanos, P. (1991). Spectral stochastic finite-element formulation for reliability analysis, Journal of Engineering Mechanics 117(10): 2351–2372.
[15] Ghanem, R. and Spanos, P. (2003). Stochastic Finite Elements: A Spectral Approach, Dover Publications, New York, NY.
[16] Gilks, W., Roberts, G. and Sahu, S. (1998). Adaptive Markov chain Monte Carlo through regeneration, Journal of American Statistical Association 93(443): 1045–1054.
[17] Goldstein, M. and Rougier, J. (2005). Probabilistic formulations for transferring inferences from mathematical models to physical systems, SIAM Journal of Scientific Computing 26(2): 467–487.
[18] Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57(1): 97–109.
[19] Higdon, D., Kennedy, M., Cavendish, J., Cafeo, J. and Ryne, R. (2005). Combining field data and computer simulations for calibration and prediction, SIAM Journal of Scientific Computing 26(2): 448–446.
[20] Hoang, V., Schwab, C. and Stuart, A. (2013). Complexity analysis of accelerated MCMC methods for Bayesian inversion, Inverse Problems 29(8): 085010.
[21] Janiszowski, K. and Wnuk, P. (2016). Identification of parameteric models with a priori knowledge of process properties, International Journal of Applied Mathematics and Computer Science 26(4): 767–776, DOI: 10.1515/amcs-2016-0054.
[22] Kamiński, M. (2015). Symbolic computing in probabilistic and stochastic analysis, International Journal of Applied Mathematics and Computer Science 25(4): 961–973, DOI: 10.1515/amcs-2015-0069.
[23] Karczewska, A., Pozmej, P., Szczeciński, M. and Boguniewicz, B. (2016). A finite element method for extended KdV equations, International Journal of Applied Mathematics and Computer Science 26(3): 555–567, DOI: 10.1515/amcs-2016-0039.
[24] Kelly, D. and Smith, C. (2009). Bayesian inference in probabilistic risk assessment—the current state of the art, Reliability Engineering and System Safety 94(2): 628–643.
[25] Kennedy, M. and O’Hagan, A. (2001). Bayesian calibration of computer models, Journal of the Royal Statistical Society B: Statistical Methodology 63(3): 425–464.
[26] Knio, O. and Maitre, O. (2006). Uncertainty propagation in CFD using polynomial chaos decomposition, Fluid Dynamics Research 38(9): 616–640.
[27] Lucor, D., Xiu, D., Su, C. and Karniadakis, G. (2003). Predictability and uncertainty in CFD, International Journal for Numerical Methods in Fluids 43(5): 483–505.
[28] Marzouk, Y. and Najm, H. (2007). Stochastic spectral methods for efficient Bayesian solution of inverse problems, Journal of Computational Physics 224(2): 560–586.
[29] Marzouk, Y. and Najm, H. (2009). Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, Journal of Computational Physics 228(6): 18621902.
[30] Mathelin, L., Hussaini, M., Zang, T. and Bataille, F. (2004). Uncertainty propagation for a turbulent, compressible nozzle flow using stochastic methods, AIAA Journal 42(8): 1669–1676.
[31] Mehta, U. (1991). Some aspects of uncertainty in computational fluid dynamics results, Journal of Fluid Engineering 113(4): 538–543.
[32] Mehta, U. (1996). Guide to credible computer simulations of fluid flows, Journal of Propulsion and Power 12(5): 940–948.
[33] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E. (1953). Equation of state calculations by fast computing machines, The Journal of Chemical Physics 21(6): 1087–1092.
[34] Narayanan, V. and Zabaras, N. (2004). Stochastic inverse heat conduction using spectral approach, International Journal for Numerical Methods in Engineering 60(9): 1569–1593.
[35] Oberkampf, W., DeLand, S., Rutherford, B., Diegert, K. and Alvin, K. (2002). Error and uncertainty in modeling and simulation, Reliability Engineering and System Safety 75(3): 335–357.
[36] O’Hagan, A. (2006). Bayesian analysis of computer code outputs: A tutorial, Reliability Engineering and System Safety 91(10–11): 1290–1300.
[37] Oreskes, N., Shrader-Frechett, K. and Belitz, K. (1994). Verification, validation and confirmation of numerical models in earth sciences, Science 263(5147): 641–647.
[38] Paulo, R. (2005). Default priors for Gaussian processes, The Annals of Statistics 33(2): 556–582.
[39] Poette, G., Despres, B. and Lucor, D. (2009). Uncertainty quantification for systems of conservation laws, Journal of Computational Physics 228(7): 2443–2467.
[40] Sapsis, T. and Lermusiaux, P. (2009). Dynamically orthogonal field equations for continuous stochastic dynamical systems, Physica D 238: 2347–2360.
[41] Sapsis, T. and Lermusiaux, P. (2012). Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty, Physica D 241(1): 60–76.
[42] Schwab, C. and Gittelson, C. (2011). Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs, Acta Numerica 20: 291–467.
[43] Schwab, C. and Stuart, A. (2012). Sparse deterministic approximation of Bayesian inverse problems, Inverse Problems 28(4): 1–32.
[44] Tagade, P. and Choi, H.-L. (2012). An efficient Bayesian calibration approach using dynamically biorthogonal field equations, ASME International Design Engineering Technical Conference and Computers and Information in Engineering Conference, Chicago, IL, USA, pp. 873–882.
[45] Tagade, P. and Choi, H.-L. (2013). A generalized polynomial chaos-based method for efficient Bayesian calibration of uncertain computational models, Inverse Problems in Science and Engineering 22(4): 602–624.
[46] Tagade, P. and Sudhakar, K. (2011). Inferencing component maps of gas turbine engine using Bayesian framework, Journal of Propulsion and Power 27(1): 94–104.
[47] Tagade, P., Sudhakar, K. and Sane, S. (2009). Bayesian framework for calibration of gas turbine simulator, Journal of Propulsion and Power 25(4): 987–992.
[48] Trucano, T., Swiler, L., Igusa, T., Oberkampf, W. and M., P. (2006). Calibration, validation, and sensitivity analysis: What’s what, Reliability Engineering and System Safety 91(10–11): 1331–1357.
[49] Venturi, D. (2011). A fully symmetric nonlinear biorthogonal decomposition theory for random fields, Physica D 240(4–5): 415–425.
[50] Wiener, N. (1938). The homogeneous chaos, American Journal of Mathematics 60(4): 897–936.
[51] Wiener, N. (1958). Nonlinear Problems in Random Theory, John Wiley, New York, NY.
[52] Xiu, D. and Karniadakis, E. (2002). The Weiner–Askey polynomial chaos for stochastic differential equations, SIAM Journal of Scientific Computing 24(2): 619–644.
[53] Xiu, D. and Karniadakis, G. (2003). Modeling uncertainty in flow simulations via generalized polynomial chaos, Journal of Computational Physics 187(1): 137–167.
[54] Zaidi, A., Ould Bouamama, B. and Tagina, M. (2012). Bayesian reliability models of Weibull systems: State of the art, International Journal of Applied Mathematics and Computer Science 22(3): 585–600, DOI: 10.2478/v10006-012-0045-2.