Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_1_a8, author = {Brugno, A. and D{\textquoteright}Apice, C. and Dudin, A. and Manzo, R.}, title = {Analysis of an {MAP/PH/1} queue with flexible group service}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {119--131}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a8/} }
TY - JOUR AU - Brugno, A. AU - D’Apice, C. AU - Dudin, A. AU - Manzo, R. TI - Analysis of an MAP/PH/1 queue with flexible group service JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 119 EP - 131 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a8/ LA - en ID - IJAMCS_2017_27_1_a8 ER -
%0 Journal Article %A Brugno, A. %A D’Apice, C. %A Dudin, A. %A Manzo, R. %T Analysis of an MAP/PH/1 queue with flexible group service %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 119-131 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a8/ %G en %F IJAMCS_2017_27_1_a8
Brugno, A.; D’Apice, C.; Dudin, A.; Manzo, R. Analysis of an MAP/PH/1 queue with flexible group service. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 1, pp. 119-131. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a8/
[1] Atencia, I. (2014). A discrete-time system with service control and repairs, International Journal of Applied Mathematics and Computer Science 24(3): 471–484, DOI: 10.2478/amcs-2014-0035.
[2] Bailey, N. (1954). On queueing processes with bulk service, Journal of the Royal Statistical Society B 16(1): 80–87.
[3] Banerjee, A., Gupta, U. and Chakravarthy, S. (2015). Analysis of afinite-buffer bulk-service queue under Markovian arrival process with batch-size-dependent service, Computers and Operations Research 60: 138–149.
[4] Casale, G., Zhang, E. and Smirn, E. (2010). Trace data characterization and fitting for Markov modeling, Performance Evaluation 67(2): 61–79.
[5] Chakravarthy, S. (2001). The batch Markovian arrival process: A review and future work, in V.R.E.A. Krishnamoorthy and N. Raju (Eds.), Advances in Probability Theory and Stochastic Processes, Notable Publications Inc., ,Branchburg, NJ, pp. 21–29.
[6] Chydzinski, A. (2006). Transient analysis of the MMPP/G/1/K queue, Telecommunication Systems 32(4): 247–262.
[7] Deb, R. and Serfozo, R. (1973). Optimal control of batch service queues, Advances in Applied Probability 5(2): 340–361.
[8] Downton, F. (1955). Waiting time in bulk service queues, Journal of the Royal Statistical Society B 17(2): 256–261.
[9] Dudin, A., Manzo, R. and Piscopo, R. (2015). Single server retrial queue with adaptive group admission of customers, Computers and Operations Research 61: 89–99.
[10] Dudin, A., Lee, M.H. and Dudin, S. (2016). Optimization of the service strategy in a queueing system with energy harvesting and customers’ impatience, International Journal of Applied Mathematics and Computer Science 26(2): 367–378, DOI: 10.1515/amcs-2016-0026.
[11] Gaidamaka, Y., Pechinkin, A., Razumchik, R., Samouylov, K. and Sopin, E. (2014). Analysis of an M/G/1/R queue with batch arrivals and two hysteretic overload control policies, International Journal of Applied Mathematics and Computer Science 24(3): 519–534, DOI: 10.2478/amcs-2014-0038.
[12] Heyman, D. and Lucantoni, D. (2003). Modelling multiple IP traffic streams with rate limits, IEEE/ACMTransactions on Networking 11(6): 948–958.
[13] Kesten, H. and Runnenburg, J. (1956). Priority in Waiting Line Problems, Mathematisch Centrum, Amsterdam.
[14] Kim, C., Dudin, A., Dudin, S. and Dudina, O. (2014). Analysis of an MMAP/PH1, PH2/N/∞ queueing system operating in a random environment, International Journal of Applied Mathematics and Computer Science 24(3): 485–501, DOI: 10.2478/amcs-2014-0036.
[15] Klemm, A., Lindermann, C. and Lohmann, M. (2003). Modelling IP traffic using the batch Markovian arrival process, Performance Evaluation 54(2): 149–173.
[16] Lucatoni, D. (1991). New results on the single server queue with a batch Markovian arrival process, Communication in Statistics: Stochastic Models 7(1): 1–46.
[17] Mèszáros, A., Papp, J. and Telek, M. (2014). Fitting traffic with discrete canonical phase type distribution and Markov arrival processes, International Journal of Applied Mathematics and Computer Science 24(3): 453–470, DOI: 10.2478/amcs-2014-0034.
[18] Neuts, M. (1967). A general class of bulk queues with Poisson input, The Annals of Mathematical Statistics 38(3): 759–770.
[19] Neuts, M. (1981). Matrix-geometric Solutions in Stochastic Models—An Algorithmic Approach, Johns Hopkins University Press, Baltimore, MD.
[20] Sasikala, S. and Indhira, K. (2016). Bulk service queueing models—a survey, International Journal of Pure and Applied Mathematics 106(6): 43–56.
[21] van Dantzig, D. (1955). Chaines de markof dans les ensembles abstraits et applications aux processus avec regions absorbantes et au probleme des boucles, Annales de l’Institut Henri Poincar´e 14(3): 145–199.