Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_1_a6, author = {Kruthika, H. A. and Mahindrakar, A. D. and Pasumarthy, R.}, title = {Stability analysis of nonlinear time-delayed systems with application to biological models}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {91--103}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a6/} }
TY - JOUR AU - Kruthika, H. A. AU - Mahindrakar, A. D. AU - Pasumarthy, R. TI - Stability analysis of nonlinear time-delayed systems with application to biological models JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 91 EP - 103 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a6/ LA - en ID - IJAMCS_2017_27_1_a6 ER -
%0 Journal Article %A Kruthika, H. A. %A Mahindrakar, A. D. %A Pasumarthy, R. %T Stability analysis of nonlinear time-delayed systems with application to biological models %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 91-103 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a6/ %G en %F IJAMCS_2017_27_1_a6
Kruthika, H. A.; Mahindrakar, A. D.; Pasumarthy, R. Stability analysis of nonlinear time-delayed systems with application to biological models. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 1, pp. 91-103. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a6/
[1] Aluru, S. (2005). Handbook of Computational Molecular Biology, CRC Press, Boca Raton, FL.
[2] Andrew, S.M., Baker, C.T. and Bocharov, G.A. (2007). Rival approaches to mathematical modelling in immunology, Journal of Computational and Applied Mathematics 205(2): 669–686.
[3] Babbs, C.F. (2011). Predicting success or failure of immunotherapy for cancer: Insights from a clinically applicable mathematical model, American Journal of Cancer Research 2(2): 204–213.
[4] Banerjee, S. (2008). Immunotherapy with interleukin-2: A study based on mathematical modeling, International Journal of Applied Mathematics and Computer Science 18(3): 389–398, DOI: 10.2478/v10006-008-0035-6.
[5] Bell, G.I. (1973). Predator–prey equations simulating an immune response, Mathematical Biosciences 16(3): 291–314.
[6] Bernot, G., Comet, J.-P., Richard, A., Chaves, M., Gouzé, J.-L. and Dayan, F. (2013). Modeling and analysis of gene regulatory networks, in F. Cazals and P. Kornprobst (Eds.), Modeling in Computational Biology and Biomedicine: A Multidisciplinary Endeavor, Springer, Berlin/Heidelberg, pp. 47–80.
[7] Bo, W., Yang, L. and Jianquan, L. (2012). New results on global exponential stability for impulsive cellular neural networks with any bounded time-varying delays, Mathematical and Computer Modelling 55(3): 837–843.
[8] Bodnar, M. (2015). General model of a cascade of reactions with time delays: Global stability analysis, Journal of Differential Equations 259(2): 777–795.
[9] Chen, L. and Aihara, K. (2002). Stability of genetic regulatory networks with time delay, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(5): 602–608.
[10] De Jong, H. (2002). Modeling and simulation of genetic regulatory systems: A literature review, Journal of Computational Biology 9(1): 67–103.
[11] d’Onofrio, A. (2005). A general framework for modeling tumor–immune-system competition and immunotherapy: Mathematical analysis and biomedical inferences, Physica D: Nonlinear Phenomena 208(3): 220–235.
[12] d’Onofrio, A. (2008). Metamodeling tumor–immune-system interaction, tumor evasion and immunotherapy, Mathematical and Computer Modelling 47(5): 614–637.
[13] d’Onofrio, A., Gatti, F., Cerrai, P. and Freschi, L. (2010). Delay-induced oscillatory dynamics of tumour–immune system interaction, Mathematical and Computer Modelling 51(5): 572–591.
[14] Eduardo, L. and Ruiz-Herrera, A. (2013). Attractivity, multistability, and bifurcation in delayed Hopfield’s model with non-monotonic feedback, Journal of Differential Equations 255(11): 4244–4266.
[15] Goodwin, B.C. (1963). Temporal Organization in Cells: A Dynamic Theory of Cellular Control Processes, Academic Press, London/New York, NY.
[16] Gu, K., Chen, J. and Kharitonov, V.L. (2003). Stability of Time-Delay Systems, Springer, New York, NY.
[17] Kao, C.-Y. and Pasumarthy, R. (2012). Stability analysis of interconnected Hamiltonian systems under time delays, IET Control Theory and Applications 6(4): 570–577.
[18] Kao, C.-Y. and Rantzer, A. (2007). Stability analysis of systems with uncertain time-varying delays, Automatica 43(6): 959–970.
[19] Kauffman, S.A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of Theoretical Biology 22(3): 437–467.
[20] Kolmanovskii, V. and Myshkis, A. (1999). Introduction to the Theory and Applications of Functional Differential Equations, Springer, Dordrecht.
[21] Liu, Y., Xu, P., Lu, J. and Liang, J. (2016a). Global stability of Clifford-valued recurrent neural networks with time delays, Nonlinear Dynamics 84(2): 767–777.
[22] Liu, Y., Zhang, D., Lu, J. and Cao, J. (2016b). Global μ-stability criteria for quaternion-valued neural networks with unbounded time-varying delays, Information Sciences 360: 273–288.
[23] Loiseau, J.J., Michiels, W., Niculescu, S.-I. and Sipahi, R. (2009). Topics in Time Delay Systems: Analysis, Algorithms and Control, Springer, Berlin/Heidelberg.
[24] Mazenc, F. and Niculescu, S.-I. (2001). Lyapunov stability analysis for nonlinear delay systems, Systems Control Letters 42(4): 245–251.
[25] Melief, C.J. (2005). Cancer immunology: Cat and mouse games, Nature 437(7055): 41–42.
[26] Papachristodoulou, A. (2004). Analysis of nonlinear time-delay systems using the sum of squares decomposition, American Control Conference, Boston, MA, USA, pp. 4153–4158.
[27] Papachristodoulou, A. and Prajna, S. (2005). A tutorial on sum of squares techniques for systems analysis, American Control Conference, Portland, OR, USA, pp. 2686–2700.
[28] Parrilo, P.A. (2000). Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization, PhD thesis, California Institute of Technology, Pasadena, CA.
[29] Pasumarthy, R. and Kao, C.-Y. (2009). On stability of time delay Hamiltonian systems, American Control Conference, St. Louis, MO, USA, pp. 4909–4914.
[30] Richard, J.-P. (2003). Time-delay systems: An overview of some recent advances and open problems, Automatica 39(10): 1667–1694.
[31] Saleem, M. and Agrawal, T. (2012). Complex dynamics in a mathematical model of tumor growth with time delays in the cell proliferation, International Journal of Scientific and Research Publications 2(6): 1–7.
[32] Sharma, A., Kohar, V., Shrimali, M. and Sinha, S. (2014). Realizing logic gates with time-delayed synthetic genetic networks, Nonlinear Dynamics 76(1): 431–439.
[33] She, Z. and Li, H. (2013). Dynamics of a density-dependent stage-structured predator-prey system with beddingtondeangelis functional response, Journal of Mathematical Analysis and Applications 406(1): 188–202.
[34] Thomas, R. (1991). Regulatory networks seen as asynchronous automata: A logical description, Journal of Theoretical Biology 153(1): 1–23.
[35] Villasana, M. and Radunskaya, A. (2003). A delay differential equation model for tumor growth, Journal of Mathematical Biology 47(3): 270–294.
[36] Wang, S., Wang, S. and Song, X. (2012). Hopf bifurcation analysis in a delayed oncolytic virus dynamics with continuous control, Nonlinear Dynamics 67(1): 629–640.
[37] Yang, R.,Wu, B. and Liu, Y. (2015). A Halanay-type inequality approach to the stability analysis of discrete-time neural networks with delays, Applied Mathematics and Computation 265: 696–707.
[38] Zhivkov, P. and Waniewski, J. (2003). Modelling tumour–immunity interactions with different stimulation functions, International Journal of Applied Mathematics and Computer Science 13(3): 307–315.
[39] Zhong, J., Lu, J., Liu, Y. and Cao, J. (2014). Synchronization in an array of output-coupled Boolean networks with time delay, IEEE Transactions on Neural Networks and Learning Systems 25(12): 2288–2294.