Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_1_a3, author = {Xu, F. and Puig, V. and Ocampo-Martinez, C. and Olaru, S. and Niculescu, S. I.}, title = {Robust {MPC} for actuator-fault tolerance using set-based passive fault detection and active fault isolation}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {43--61}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a3/} }
TY - JOUR AU - Xu, F. AU - Puig, V. AU - Ocampo-Martinez, C. AU - Olaru, S. AU - Niculescu, S. I. TI - Robust MPC for actuator-fault tolerance using set-based passive fault detection and active fault isolation JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 43 EP - 61 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a3/ LA - en ID - IJAMCS_2017_27_1_a3 ER -
%0 Journal Article %A Xu, F. %A Puig, V. %A Ocampo-Martinez, C. %A Olaru, S. %A Niculescu, S. I. %T Robust MPC for actuator-fault tolerance using set-based passive fault detection and active fault isolation %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 43-61 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a3/ %G en %F IJAMCS_2017_27_1_a3
Xu, F.; Puig, V.; Ocampo-Martinez, C.; Olaru, S.; Niculescu, S. I. Robust MPC for actuator-fault tolerance using set-based passive fault detection and active fault isolation. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 1, pp. 43-61. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a3/
[1] Hanlon, P. and Maybeck, P. (2000). Multiple-model adaptive estimation using a residual correlation Kalman filter bank, IEEE Transactions on Aerospace and Electronic Systems 36(2): 393–406.
[2] Jiang, B. and Chowdhury, F. (2005). Fault estimation and accommodation for linear MIMO discrete-time systems, IEEE Transactions on Control Systems Technology 13(3): 493–499.
[3] Jiang, B., Staroswiecki, M. and Cocquempot, V. (2006). Fault accommodation for nonlinear dynamic systems, IEEE Transactions on Automatic Control 51(9): 1578–1583.
[4] Kofman, E., Haimovich, H. and Seron, M. (2007). A systematic method to obtain ultimate bounds for perturbed systems, International Journal of Control 80(2): 167–178.
[5] Kolmanovsky, I. and Gilbert, E. (1998). Theory and computation of disturbance invariant sets for discrete-time linear systems, Mathematical Problems in Engineering 4(4): 317–367.
[6] Le, V., Stoica, C., Alamo, T., Camacho, E. and Dumur, D. (2013). Zonotope-based set-membership estimation for multi-output uncertain systems, Proceedings of the 2013 IEEE international Symposium on Intelligent Control (ISIC), Hyderabad, India, pp. 212–217.
[7] Maciejowski, J. (1999). Fault-tolerant aspects ofMPC, IEE Two-Day Workshop on Model Predictive Control: Techniques and Applications, London, UK, pp. 1/1–1/4.
[8] Mayne, D., Raković, S., Findeisen, R. and Allgöwer, F. (2006). Robust output feedback model predictive control of constrained linear systems, Automatica 42(7): 1217–1222.
[9] Ocampo-Martinez, C., Doná, J.D. and Seron, M. (2010). Actuator fault-tolerant control based on set separation, International Journal of Adaptive Control and Signal Processing 24(12): 1070–1090.
[10] Olaru, S., Doná, J.D., Seron, M. and Stoican, F. (2010). Positive invariant sets for fault tolerant multisensor control schemes, International Journal of Control 83(12): 2622–2640.
[11] Osella, E., Haimovich, H. and Seron, M. (2015). Integration of invariant-set-based FDI with varying sampling rate virtual actuator and controller, International Journal of Adaptive Control and Signal Processing 30(2): 393–411.
[12] Raimondo, D., Marseglia, G., Braatz, R. and Scott, J. (2013). Fault-tolerant model predictive control with active fault isolation, Proceedings of the 2013 Conference on Control and Fault-Tolerant Systems (SysTol), Nice, France, pp. 6567–6572.
[13] Reppa, V., Olaru, S. and Polycarpou, M.M. (2015). Structural detectability analysis of a distributed sensor fault diagnosis scheme for a class of nonlinear systems, IFACPapersOnLine 48(21): 1485–1490.
[14] Steffen, T. (2005). Control Reconfiguration of Dynamical Systems, Springer, Berlin.
[15] Sun, S., Dong, L., Li, L. and Gu, S. (2008). Fault-tolerant control for constrained linear systems based on MPC and FDI, International Journal of Information and Systems Sciences 4(4): 512–523.
[16] Xu, D., Jiang, B. and Shi, P. (2012). Nonlinear actuator fault estimation observer: An inverse system approach via a T–S fuzzy model, International Journal of Applied Mathematics and Computer Science 22(1): 183–196, DOI: 10.2478/v10006-012-0014-9.
[17] Xu, F., Puig, V., Ocampo-Martinez, C., Olaru, S. and Nicolescu, S. (2014). Robust MPC for actuator-fault tolerance using set-based passive fault detection and active fault isolation, Proceedings of the IEEE Conference on Decision and Control, Los Angeles, CA, USA, pp. 4959–4964.
[18] Yang, X. and Maciejowski, J.M. (2015). Fault tolerant control using Gaussian processes and model predictive control, International Journal of Applied Mathematics and Computer Science 25(1): 133–148, DOI: 10.1515/amcs-2015-0010.
[19] Yetendje, A., Seron, M.M. and Doná, J.A.D. (2011). Robust MPC multicontroller design for actuator fault tolerance of constrained systems, IFAC Proceedings Volumes 44(1): 4678–4683.
[20] Yetendje, A., Seron, M.M. and De Doná, J.A. (2012). Robust multisensor fault tolerant model-following MPC design for constrained systems, International Journal of Applied Mathematics and Computer Science 22(1): 211–223, DOI: 10.2478/v10006-012-0016-7.