Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_1_a11, author = {Szemenyei, M. and Vajda, F.}, title = {Dimension reduction for objects composed of vector sets}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {169--180}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a11/} }
TY - JOUR AU - Szemenyei, M. AU - Vajda, F. TI - Dimension reduction for objects composed of vector sets JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 169 EP - 180 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a11/ LA - en ID - IJAMCS_2017_27_1_a11 ER -
%0 Journal Article %A Szemenyei, M. %A Vajda, F. %T Dimension reduction for objects composed of vector sets %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 169-180 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a11/ %G en %F IJAMCS_2017_27_1_a11
Szemenyei, M.; Vajda, F. Dimension reduction for objects composed of vector sets. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 1, pp. 169-180. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a11/
[1] Agarwal, S., Awan, A. and Roth, D. (2004). Learning to detect objects in images via a sparse, part-based representation, IEEE Transactions on Pattern Analysis and Machine Intelligence 26(11): 1475–1490.
[2] Bååth, R. (2014). Bayesian first aid: A package that implements Bayesian alternatives to the classical *.test functions in R, International R User Conference UseR! 2014, Los Angeles, CA, USA, pp. 86.
[3] Baudat, G. and Anouar, F. (2000). Generalized discriminant analysis, Neural Computation 12(1): 2385–2404.
[4] Boutsidis, C., Zouzias, A., Mahoney, M.W. and Drineas, P. (2011). Stochastic dimensionality reduction for k-means clustering, CoRR abs/1110.2897, http://arxiv.org/abs/1110.2897.
[5] Bronstein, A.M., Bronstein, M.M. and Ovsjanikov, M. (2010). Feature-based methods in 3D shape analysis, in N. Pears et al. (Eds.), 3D Imaging Analysis and Applications, Springer-Verlag, London, pp. 185–216.
[6] Chai, D., He, X., Zhou, K., Han, J. and Bao, H. (2007). Locality sensitive discriminant analysis, International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 708–713.
[7] Cunningham, J.P. and Ghahramani, Z. (2015). Linear dimensionality reduction: Survey, insights, and generalizations, Journal of Machine Learning Research 16(1): 2859–2900.
[8] Demirci, M.F., Osmanlioglu, Y., Shokoufandeh, A. and Dickinson, S. (2011). Efficient many-to-many feature matching under the l1 norm, Computer Vision and Image Understanding 115(7): 967–983.
[9] Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society 39(1): 1–38.
[10] Fei-Fei, L., Fergus, R. and Perona, P. (2007). Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories, Journal Computer Vision and Image Understanding 106(1): 59–70.
[11] Fei-Fei, L. and Perona, P. (2005). A Bayesian hierarchical model for learning natural scene categories, IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, pp. 524–531.
[12] Felzenszwalb, P.F., Girshick, R.B., McAllester, D. and Ramanan, D. (2010). Object detection with discriminatively trained part-based models, IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9): 1627–1645.
[13] Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition, Academic Press, San Diego, CA.
[14] Gkalelis, N., Mezaris, V. and Kompatsiaris, I. (2011). Mixture subclass discriminant analysis, IEEE Signal Processing Letters 18(5): 319–322.
[15] Górecki, T. and Łuczak, M. (2013). Linear discriminant analysis with a generalization of the Moore–Penrose pseudoinverse, International Journal of Applied Mathematics and Computer Science 23(2): 463–471, DOI: 10.2478/amcs-2013-0035.
[16] Harandi, M.T., Sanderson, C., Shirazi, S. and Lovell, B.C. (2011). Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching, IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, pp. 2705–2712.
[17] Hastie, T., Buja, A. and Tibshirani, R. (1995). Penalized discriminant analysis, Annals of Statistics 23(1): 73–102.
[18] Hastie, T. and Tibshirani, R. (1996). Discriminant analysis by Gaussian mixtures, Journal of the Royal Statistical Society 58(1): 155–176.
[19] Hyvärinen, A., Karhunen, J. and Oja, E. (2001). Independent Component Analysis, JohnWiley and Sons, New York, NY.
[20] Jolliffe, I.-T. (2002). Principal Component Analysis, Springer-Verlag, New York, NY.
[21] Kruschke, J.K. (2013). Bayesian estimation supersedes the t-test, Journal of Experimental Psychology: General 142(2): 573–603.
[22] Kulczycki, P. and Łukasik, S. (2014). An algorithm for reducing the dimension and size of a sample for data exploration procedures, International Journal of Applied Mathematics and Computer Science 24(1): 133–149, DOI: 10.2478/amcs-2014-0011.
[23] Kumar, C.A. (2009). Analysis of unsupervised dimensionality reduction techniques, Computer Science and Information Systems 6(2): 217–227.
[24] Lazebnik, S., Schmid, C. and Ponce, J. (2005). A maximum entropy framework for part-based texture and object recognition, IEEE International Conference on Computer Vision, Beijing, China, pp. 832–838.
[25] Lin, T.-S. (1992). Statistical feature extraction and selection for IC test pattern analysis, IEEE International Symposium on Circuits and Systems, San Diego, CA, USA, pp. 391–394.
[26] Liu, X., Wang, Z., Liu, J. and Feng, Z. (2008). Face recognition with locality sensitive discriminant analysis based on matrix representation, IEEE International Joint Conference on Neural Networks, Montreal, Canada, pp. 4052–4058.
[27] Lowe, D.G. (2004). Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision 60(2): 91–110.
[28] Marszałek, M. and Schmid, C. (2007). Accurate object localization with shape masks, IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, pp. 1–8.
[29] McLachlan, G.-J. (2004). Discriminant Analysis and Statistical Pattern Recognition, John Wiley and Sons, New York, NY.
[30] Nilsback, M.-E. and Zisserman, A. (2008). Automated flower classification over a large number of classes, Indian Conference on Computer Vision, Graphics and Image Processing, Bhubaneswar, India, pp. 722–729.
[31] Schnabel, R.,Wahl, R. and Klein, R. (2007). Efficient RANSAC for point-cloud shape detection, Computer Graphics Forum 26(2): 214–226.
[32] Schnabel, R., Wessel, R., Wahl, R. and Klein, R. (2008). Shape recognition in 3D point-clouds, 16th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Pilzen, Czech Republic, pp. 65–72.
[33] Song, F., Z.Guo and Mei, D. (2010). Feature selection using principal component analysis, International Conference on System Science, Engineering Design and Manufacturing Informatization, Guiyang, China, pp. 27–30.
[34] Surendiran, B. and Vadivel, A. (2011). Feature selection using stepwise ANOVA discriminant analysis for mammogram mass classification, ACEEE International Journal on Signal and Image Processing 2(1): 17–19.
[35] Szemenyei, M. and Vajda, F. (2015). Learning 3D object recognition using graphs based on primitive shapes, Workshop on the Advances of Information Technology, Budapest, Hungary, pp. 187–195.
[36] Wang, Y., Jiang, H., Drew, M.S., Li, Z.-N. and Mori, G. (2006). Unsupervised discovery of action classes, IEEE Conference on Computer Vision and Pattern Recognition, New York, NY, USA, pp. 1645–1661.
[37] Wu, C. (2013). Towards linear-time incremental structure from motion, International Conference on 3D Vision, Seattle, WA, USA, pp. 127–134.
[38] Yang, M.-H. and Ahuja, N. (2001). Face detection using multimodal density models, International Series in Video Computing 1(1): 97–122.
[39] Yang, M. and Yuan, X.-M. (2009). Structured semi-supervised discriminant analysis, International Conference on Wavelet Analysis and Pattern Recognition, Baoding, China, pp. 148–153.
[40] Yasuoka, S., Kang, Y., Morooka, K. and Nagahashi, H. (2004). Texture classification using hierarchical discriminant analysis, IEEE Conference on Systems, Man and Cybernetics, The Hague, The Netherlands, pp. 6395–6400.
[41] Zhu, M. and Martinez, A.M. (2006). Subclass discriminant analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence 28(8): 1274–1286.