Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_1_a1, author = {Moysis, L. and Karampetakis, N. P.}, title = {Construction of algebraic and difference equations with a prescribed solution space}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {19--32}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a1/} }
TY - JOUR AU - Moysis, L. AU - Karampetakis, N. P. TI - Construction of algebraic and difference equations with a prescribed solution space JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 19 EP - 32 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a1/ LA - en ID - IJAMCS_2017_27_1_a1 ER -
%0 Journal Article %A Moysis, L. %A Karampetakis, N. P. %T Construction of algebraic and difference equations with a prescribed solution space %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 19-32 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a1/ %G en %F IJAMCS_2017_27_1_a1
Moysis, L.; Karampetakis, N. P. Construction of algebraic and difference equations with a prescribed solution space. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 1, pp. 19-32. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a1/
[1] Antoniou, E., Vardulakis, A. and Karampetakis, N. (1998). A spectral characterization of the behavior of discrete time AR-representations over a finite time interval, Kybernetika 34(5): 555–564.
[2] Antoulas, A. and Willems, J. (1993). A behavioral approach to linear exact modeling., IEEE Transactions on Automatic Control 38(12): 1776–1802.
[3] Antsaklis, P.J. and Michel, A.N. (2006). Linear Systems, 2nd Edn., Birkh¨auser, Boston, MA.
[4] Bernstein, D.S. (2009). Matrix Mathematics. Theory, Facts, and Formulas, 2nd Edn., Princeton University Press, Princeton, NJ.
[5] Campbell, S. (1980). Singular Systems of Differential Equations, Vol. 1, Research Notes in Mathematics, Pitman, London.
[6] Gantmacher, F.R. (1959). The Theory of Matrices, Vols. 1, 2, Chelsea Publishing Co., New York, NY.
[7] Gohberg, I., Lancaster, P. and Rodman, L. (2009). Matrix Polynomials, Reprint, SIAM, Philadelphia, PA.
[8] Hayton, G., Pugh, A. and Fretwell, P. (1988). Infinite elementary divisors of a matrix polynomial and implications, International Journal of Control 47(1): 53–64.
[9] Kaczorek, T. (2007). Polynomial and Rational Matrices. Applications in Dynamical Systems Theory, Springer, Dordrecht.
[10] Kaczorek, T. (2014). Minimum energy control of fractional descriptor positive discrete-time linear systems, International Journal of Applied Mathematics and Computer Science 24(4): 735–743, DOI: 10.2478/amcs-2014-0054.
[11] Kaczorek, T. (2015). Analysis of the descriptor Roesser model with the use of the Drazin inverse, International Journal of Applied Mathematics and Computer Science 25(3): 539–546, DOI: 10.1515/amcs-2015-0040.
[12] Karampetakis, N.P. (2004). On the solution space of discrete time AR-representations over a finite time horizon, Linear Algebra and Its Applications 382: 83–116.
[13] Karampetakis, N.P. (2015). Construction of algebraic-differential equations with given smooth and impulsive behaviour, IMA Journal of Mathematical Control and Information 32(1): 195–224.
[14] Karampetakis, N.P. and Vologiannidis, S. (2003). Infinite elementary divisor structure-preserving transformations for polynomial matrices, International Journal of Applied Mathematics and Computer Science 13(4): 493–503.
[15] Karampetakis, N., Vologiannidis, S. and Vardulakis, A. (2004). A new notion of equivalence for discrete time AR representations, International Journal of Control 77(6): 584–597.
[16] Markovsky, I., Willems, J.C., Van Huffel, S. and De Moor, B. (2006). Exact and Approximate Modeling of Linear Systems. A Behavioral Approach, SIAM, Philadelphia, PA.
[17] Praagman, C. (1991). Invariants of polynomial matrices, Proceedings of the 1st European Control Conference, Grenoble, France, pp. 1274–1277.
[18] Vardulakis, A. (1991). Linear Multivariable Control. Algebraic Analysis and Synthesis Methods, John Wiley Sons, Chichester.
[19] Vardulakis, A., Limebeer, D. and Karcanias, N. (1982). Structure and Smith–MacMillan form of a rational matrix at infinity, International Journal of Control 35(4): 701–725.
[20] Willems, J.C. (1986). From time series to linear system, II: Exact modelling, Automatica 22(6): 675–694.
[21] Willems, J.C. (1991). Paradigms and puzzles in the theory of dynamical systems, IEEE Transansactions on Automatic Control 36(3): 259–294.
[22] Willems, J.C. (2007). Recursive computation of the MPUM, in A. Chiuso et al. (Eds.), Modeling, Estimation and Control, Springer, Berlin, pp. 329–344.
[23] Zaballa, I. and Tisseur, F. (2012). Finite and infinite elementary divisors of matrix polynomials: A global approach, MIMS EPrint 2012.78, Manchester Institute for Mathematical Sciences, University of Manchester, Manchester.
[24] Zerz, E. (2008a). Behavioral systems theory: A survey, International Journal of Applied Mathematics and Computer Science 18(3): 265–270, DOI: 10.2478/v10006-008-0024-9.
[25] Zerz, E. (2008b). The discrete multidimensional MPUM, Multidimensional System Signal Processing 19(3–4): 307–321.
[26] Zerz, E., Levandovskyy, V. and Schindelar, K. (2011). Exact linear modeling with polynomial coefficients, Multidimensional System Signal Processing 22(1–3): 55–65.