Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_1_a0, author = {Luis-Delgado, J. D. and Al-Hadithi, B. M. and Jim\'enez, A.}, title = {A novel method for the design of switching surfaces for discretized {MIMO} nonlinear systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {5--17}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a0/} }
TY - JOUR AU - Luis-Delgado, J. D. AU - Al-Hadithi, B. M. AU - Jiménez, A. TI - A novel method for the design of switching surfaces for discretized MIMO nonlinear systems JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 5 EP - 17 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a0/ LA - en ID - IJAMCS_2017_27_1_a0 ER -
%0 Journal Article %A Luis-Delgado, J. D. %A Al-Hadithi, B. M. %A Jiménez, A. %T A novel method for the design of switching surfaces for discretized MIMO nonlinear systems %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 5-17 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a0/ %G en %F IJAMCS_2017_27_1_a0
Luis-Delgado, J. D.; Al-Hadithi, B. M.; Jiménez, A. A novel method for the design of switching surfaces for discretized MIMO nonlinear systems. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 1, pp. 5-17. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_1_a0/
[1] Ababneh, M., Salah, M. and Alwidyanm, K. (2011). Linearization of nonlinear dynamical systems: A comparative study, Jordan Journal of Mechanical and Industrial Engineering 5(6): 567–571.
[2] Ackermann, J. and Utkin, V. (1994). Slidingmode control design based on Ackermann’s formula, Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL, USA, Vol. 4, pp. 3622–3627.
[3] Åström, K.J. and Wittenmark, B. (1997). Computer-Controlled Systems. Theory and Design, 3rd Edn., Prentice-Hall, Upper Saddle River, NJ.
[4] Bartoszewicz, A. (1998). Discrete-time quasi-sliding-mode control strategies, IEEE Transactions on Industrial Electronics 45(4): 633–637.
[5] Bartoszewicz, A. and Leśniewski, P. (2014). An optimal sliding mode congestion controller for connection-oriented communication networks with lossy links, International Journal of Applied Mathematics and Computer Science 24(1): 87–97, DOI: 10.2478/amcs-2014-0007.
[6] Camacho, O. and Smith, C.A. (2000). Sliding mode control: An approach to regulate nonlinear chemical processes, ISA Transactions 39(2): 205–218.
[7] Choi, H.H. (2003). An LMI-based switching surface design method for a class of mismatched uncertain systems, IEEE Transactions on Automatic Control 48(9): 1634–1638.
[8] DeCarlo, R., Zak, S. and Matthews, G. (1988). Variable structure control of nonlinear multivariable systems: A tutorial, Proceedings of the IEEE 76(3): 212–232.
[9] Dorling, C. and Zinober, A. (1986). Two approaches to hyperplane design in multivariable structure control systems, International Journal of Control 44(1): 65–82.
[10] Draženović, B., Milosavljević, Č. and Veselić, B. (2013). Comprehensive approach to sliding mode design and analysis in linear systems, in B. Bandyopdhyay et al. (Eds.), Advances in Sliding Mode Control: Concept, Theory and Implementation, Springer, Heidelberg, pp. 1–19.
[11] Edwards, C. and Spurgeon, S. (2003). Linear matrix inequality methods for designing sliding mode output feedback controllers, IEE Proceedings: Control Theory and Applications 150(5): 539–545.
[12] Furuta, K. (1990). Sliding mode control of a discrete system, Systems and Control Letters 14(2): 145–152.
[13] Furuta, K. and Pan, Y. (1995). A new approach to design a sliding sector for VSS controller, Proceedings of the 1995 American Control Conference, Seatle, WA, USA, Vol. 2, pp. 1304–1308.
[14] Furuta, K. and Pan, Y. (2002). Discrete-time variable structure control, in X. Yu and J.-X. Xu (Eds.), Variable Structure Systems: Towards the 21st Century, Springer, Berlin, pp. 57–81.
[15] Gao, W. and Hung, J. (1993). Variable structure control of nonlinear systems: A new approach, IEEE Transactions on Industrial Electronics 40(1): 45–55.
[16] Gao, W., Wang, Y. and Homaifa, A. (1995). Discrete-time variable structure control systems, IEEE Transactions on Industrial Electronics 42(2): 117–122.
[17] Gatzke, E.P., Meadows, E.S., Wang, C. and Doyle, F.J. (2000). Model based control of a four-tank system, Computers Chemical Engineering 24(2): 1503–1509.
[18] Ghaffari, A. and Yazdanpanah, M. (2008). Nonlinear sliding surfaces: Computing and existence of solution, International Conference on Control, Automation and Systems, ICCAS 2008, Seoul, Korea, pp. 1610–1615.
[19] Hung, J.Y., Gao, W. and Hung, J.C. (1993). Variable structure control: A survey, IEEE Transactions on Industrial Electronics 40(1): 2–22.
[20] Johansson, K. and Nunes, J. (1998). A multivariable laboratory process with an adjustable zero, Proceedings of the 1998 American Control Conference, Philadelphia, PA, USA, Vol. 4, pp. 2045–2049.
[21] Kim, K.-S., Park, Y. and Oh, S.-H. (2000). Designing robust sliding hyperplanes for parametric uncertain systems: A Riccati approach, Automatica 36(7): 1041–1048.
[22] Lin, Y., Shi, Y. and Burton, R. (2013). Modeling and robust discrete-time sliding-mode control design for a fluid power electrohydraulic actuator (EHA) system, IEEE/ASME Transactions on Mechatronics 18(1): 1–10.
[23] Milosavljević, Č. (1985). General conditions for the existence of a quasi-sliding mode on the switching hyperplane in discrete variable structure systems, Automation and Remote Control 46(3): 307–314.
[24] Mondal, S., Gokul, T. and Mahanta, C. (2012). Chattering free sliding mode controller for mismatched uncertain system, 7th IEEE International Conference on Industrial and Information Systems (ICIIS), Chennal, India, pp. 1–6.
[25] Nadzinski, G., Vladev, G. and Zheng, Y. (2012). A design of discrete-time SMC for nonlinear systems based on fuzzy T–S model, 6th IEEE International Conference on Intelligent Systems (IS), Sofia, Bulgaria, pp. 317–324.
[26] Pai, M.-C. (2008). Discrete-time output feedback sliding mode control for uncertain systems, Journal of Marine Science and Technology 16(4): 295–300.
[27] Perruquetti, W. and Barbot, J.-P. (2002). Sliding Mode Control in Engineering, Marcel Dekker, New York, NY.
[28] Potts, R. and Yu, X. (1991). Discrete variable structure system with pseudo-sliding mode, Journal of the Australian Mathematical Society B: Applied Mathematics 32(04): 365–376.
[29] Qu, S., Xia, X. and Zhang, J. (2014). Dynamics of discrete-time sliding-mode-control uncertain systems with a disturbance compensator, IEEE Transactions on Industrial Electronics 61(7): 3502–3510.
[30] Rui, D. and Dong-wei, S. (2011). Optimal sliding mode design for nonlinear discrete-time systems, 30th Chinese Control Conference (CCC), Yantai, China, pp. 738–742.
[31] Sira-Ramírez, H. (1986). Variable structure control of nonlinear systems through simplified uncertain models, 25th IEEE Conference on Decision and Control, Athens, Greece, pp. 2037–2041.
[32] Sira-Ramírez, H. (1991). Non-linear discrete variable structure systems in quasi-sliding mode, International Journal of Control 54(5): 1171–1187.
[33] Soroush, M. and Kravaris, C. (1992). Discrete-time nonlinear controller synthesis by input/output linearization, AIChE Journal 38(12): 1923–1945.
[34] Spurgeon, S. and Davies, R. (1993). A nonlinear design approach for sliding mode control systems, Proceedings of the 32nd IEEE Conference on Decision and Control, San Antonio, TX, USA, Vol. 2, pp. 1440–1445.
[35] Spurgeon, S. and Pugh, A. (1991). On output deadbeat control of discrete-time multivariable systems, IEEE Transactions on Automatic Control 36(7): 894–896.
[36] Su, W.C., Drakunov, S.V. and ¨ Ozg¨uner, ¨U. (1994). Constructing discontinuity planes for variable structure systems—A Lyapunov approach, American Control Conference, Baltimore, MD, USA, Vol. 1, pp. 1169–1173.
[37] Su,W.-C., Drakunov, S.V. and Özgüner, Ü. (1996). Constructing discontinuity surfaces for variable structure systems: A Lyapunov approach, Automatica 32(6): 925–928.
[38] Tapia, A., Márquez, R., Bernal, M. and Cortez, J. (2014). Sliding subspace design based on linear matrix inequalities, Kybernetika 50(3): 436–449.
[39] Utkin, V. (1977). Variable structure systems with sliding modes, IEEE Transactions on Automatic Control 22(2): 212–222.
[40] Utkin, V., Guldner, J. and Shi, J. (1999). Sliding Mode Control in Electro-mechanical Systems, CRC Press, Boca Raton, FL.
[41] Utkin, V. and Yang, K. (1978). Methods for construction of discontinuity planes in multidimensional variable structure systems, Automation and Remote Control 39(6): 1466–1470.
[42] Wang, Y., Xia, Z., Jiang, Z. and Xie, G. (2011). A quasi-sliding mode variable structure control algorithm for discrete-time and time-delay systems, Chinese Control and Decision Conference, Mianyang, China, pp. 107–110.
[43] Yadav, N. K. and Singh, R. (2012). Robust discrete-time nonlinear sliding mode controller with plant uncertainties, International Journal of Engineering, Science and Technology 4(1): 38–45.
[44] Yu, S., Yu, X. and Qian, W. (2000). Time delayed discrete variable structure control with quasi-sliding modes, in X. Yu and J.-X. Xu (Eds.), Advances in Variable Structure Systems: Analysis, Integration and Applications, World Scientific, Singapore, pp. 84–92.
[45] Zhang, X., Wang, P., Yan, M. and Ju, Y. (2010). Discrete-time sliding mode control of nonlinear time-delay systems based on T–S fuzzy model, International Conference on Intelligent Control and Information Processing (ICICIP), Dalian, China, pp. 304–309.