Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_4_a2, author = {Avenda\~no-Garrido, M. L. and Gabriel-Arg\"uelles, J. R. and Quintana-Torres, L. and Mezura-Montes, E.}, title = {A metaheuristic for a numerical approximation to the mass transfer problem}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {757--766}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a2/} }
TY - JOUR AU - Avendaño-Garrido, M. L. AU - Gabriel-Argüelles, J. R. AU - Quintana-Torres, L. AU - Mezura-Montes, E. TI - A metaheuristic for a numerical approximation to the mass transfer problem JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 757 EP - 766 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a2/ LA - en ID - IJAMCS_2016_26_4_a2 ER -
%0 Journal Article %A Avendaño-Garrido, M. L. %A Gabriel-Argüelles, J. R. %A Quintana-Torres, L. %A Mezura-Montes, E. %T A metaheuristic for a numerical approximation to the mass transfer problem %J International Journal of Applied Mathematics and Computer Science %D 2016 %P 757-766 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a2/ %G en %F IJAMCS_2016_26_4_a2
Avendaño-Garrido, M. L.; Gabriel-Argüelles, J. R.; Quintana-Torres, L.; Mezura-Montes, E. A metaheuristic for a numerical approximation to the mass transfer problem. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 4, pp. 757-766. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a2/
[1] Anderson, E. and Nash, P. (1987). Linear Programming in Infinite-dimensional Spaces, Wiley, New York, NY.
[2] Anderson, E. and Philpott, A. (1984). Duality and an algorithm for a class of continuous transportation problems, Mathematics of Operations Research 9(2): 222–231.
[3] Bazaraa, M.S., Jarvis, J.J. and Sherali, H.D. (2010). Linear Programming and Network Flows,Wiley-Interscience, Hoboken, NJ.
[4] Benamou, J. (2003). Numerical resolution of an unbalanced mass transport problem, ESAIM Mathematical Modelling and Numerical Analysis 37(5): 851–868.
[5] Benamou, J. and Brenier, Y. (2000). A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem, Numerische Mathematik 84(3): 375–393.
[6] Bosc, D. (2010). Numerical approximation of optimal transport maps, SSRN Electronic Journal, DOI: 10.2139/ssrn.1730684.
[7] Caffarelli, L., Feldman, M. and McCann, R. (2002). Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs, Journal of the American Mathematical Society 15(1): 1–26.
[8] Gabriel, J., González-Hernández, J. and López-Martínez, R. (2010). Numerical approximations to the mass transfer problem on compact spaces, IMA Journal of Numerical Analysis 30(4): 1121–1136.
[9] Glover, F. (1998). A template for scatter search and path relinking, in J.-K. Hao et al. (Eds.), Artificial Evolution, Lecture Notes in Computer Science, Vol. 1363, Springer, Berlin/Heidelberg, pp. 1–51.
[10] González-Hernández, J., Gabriel, J. and Hernández-Lerma, O. (2006). On solutions to the mass transfer problem, SIAM Journal on Optimization 17(2): 485–499.
[11] Guittet, K. (2003). On the time-continuous mass transport problem and its approximation by augmented Lagrangian techniques, SIAM Journal on Numerical Analysis 41(1): 382–399.
[12] Haker, S., Zhu, L., Tannenbaum, A. and Angenent, S. (2004). Optimal mass transport for registration and warping, International Journal of Computer Vision 63(3): 225–240.
[13] Hanin, L., Rachev, S. and Yakovlev, A. (1993). On the optimal control of cancer radiotherapy for non-homogeneous cell population, Advances in Applied Probability 25(1): 1–23.
[14] Hernández-Lerma, O. and Gabriel, J. (2002). Strong duality of the Monge–Kantorovich mass transfer problem in metric spaces, Mathematische Zeitschrift 239(3): 579–591.
[15] Hernández-Lerma, O. and Lasserre, J. (1998). Approximation schemes for infinite linear programs, SIAM Journal on Optimization 8(4): 973–988.
[16] Kantorovich, L. (2006a). On a problem of Monge, Journal of Mathematical Sciences 133(4): 225–226.
[17] Kantorovich, L. (2006b). On the translocation of masses, Journal of Mathematical Sciences 133(4): 1381–1382.
[18] Laguna, M., Gortázar, F., Gallego, M., Duarte, A. and Martí, R. (2014). A black-box scatter search for optimization problems with integer variables, Journal of Global Optimization 58(3): 497–516.
[19] Levin, V. (2006). Optimality conditions and exact solutions to the two-dimensional Monge–Kantorovich problem, Journal of Mathematical Sciences 133(4): 1456–1463.
[20] Martí, R., Laguna, M. and Glover, F. (2006). Principles of scatter search, European Journal of Operational Research 169(2): 359–372.
[21] Mèrigot, Q. (2011). A multiscale approach to optimal transport, Computer Graphics Forum 30(5): 1583–1592.
[22] Monge, G. (1781). Mémoire sur la théorie des déblais et des remblais, De l’Imprimerie Royale, Paris.
[23] Rachev, S. (1991). Probability Metrics and the Stability of Stochastic Models, Wiley, New York, NY.
[24] Rachev, S. and Rüschendorf, L. (1998). Mass Transportation Problems, Vol. I, Springer, New York, NY.