Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_4_a13, author = {Karcz-Duleba, I.}, title = {The impatience mechanism as a diversity maintaining and saddle crossing strategy}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {905--918}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a13/} }
TY - JOUR AU - Karcz-Duleba, I. TI - The impatience mechanism as a diversity maintaining and saddle crossing strategy JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 905 EP - 918 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a13/ LA - en ID - IJAMCS_2016_26_4_a13 ER -
%0 Journal Article %A Karcz-Duleba, I. %T The impatience mechanism as a diversity maintaining and saddle crossing strategy %J International Journal of Applied Mathematics and Computer Science %D 2016 %P 905-918 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a13/ %G en %F IJAMCS_2016_26_4_a13
Karcz-Duleba, I. The impatience mechanism as a diversity maintaining and saddle crossing strategy. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 4, pp. 905-918. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a13/
[1] Barabasz, B., Gajda-Zagórska, E., Migórski, S., Paszyński, M., Schaefer, R. and Smołka, M. (2014). A hybrid algorithm for solving inverse problems in elasticity, International Journal of Applied Mathematics and Computer Science 24(4): 865–886, DOI: 10.2478/amcs-2014-0064.
[2] Chen, T., He, J., Chen, G. and Yao, X. (2010). Choosing selection pressure for wide-gap problems, Theoretical Computer Science 411(6): 926–934.
[3] Chorazyczewski, A. and Galar, R. (1998). Visualization of evolutionary adaptation in Rn, in V. Porto et al. (Eds.), Evolutionary Programming VII, Springer-Verlag, London, pp. 657–668.
[4] DeJong, K. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D. thesis, University of Michigan, Ann Arbour, MI.
[5] Dick, G. and Whigham, P.A. (2006). Spatially-structured evolutionary algorithms and sharing: Do they mix?, in Wang et al. (Eds.), SEAL 2006, Lecture Notes in Computer Science, Vol. 4247, Springer-Verlag, Berlin/Heidelberg, pp. 457–464.
[6] Galar, R. (1989). Evolutionary search with soft selection, Biological Cybernetics 60(5): 357–364.
[7] Galar, R. and Chorazyczewski, A. (2001). Evolutionary dynamics in space of states, Congress on Evolutionary Computation, Seoul, Korea, pp. 1366–1373.
[8] Galar, R. and Kopciuch, P. (1999). Impatience and polarization in evolutionary processes, Proceedings of the KAEiOG Conference, Potok Złoty, Poland, pp. 115–122, (in Polish).
[9] Goldberg, D. and Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms, in G. Rawlins (Ed.), Foundations of Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp. 69–93.
[10] Goldberg, D. and Richardson, J. (1987). Genetic algorithms with sharing for multi-modal function optimisation, Proceedings of the 2nd International Conference on Genetic Algorithms and Their Applications, Hillsdale, NJ, USA, pp. 41–49.
[11] Grosan, C. and Abraham, A. (2007). Hybrid evolutionary algorithms: Methodologies, architectures, and reviews, in A. Abraham et al. (Eds.), Hybrid Evolutionary Algorithms, Studies in Computational Intelligence, Vol. 75, Springer, Berlin/Heidelberg, pp. 1–17.
[12] Hansen, N. (2005). Compilation of results on the 2005 CEC benchmark function set, http:www.lri.fr/~hansen/cec2005compareresults.pdf.
[13] Karcz-Dulęba, I. (2004). Asymptotic behavior of discrete dynamical system generated by simple evolutionary process, International Journal of Applied Mathematics and Computer Science 14(1): 79–90.
[14] Karcz-Duleba, I. (2006). Dynamics of two-element populations in the space of population states, IEEE Transactions on Evolutionary Computation 10(2): 199–209.
[15] Karcz-Duleba, I. (2014). Impatience mechanism in saddles’ crossing, Proceedings of the 6th International Conference ECTA, Rome, Italy, Vol. 75 pp. 174–184.
[16] Kowalczuk, Z. and Białaszewski, T. (2006). Niching mechanisms in evolutionary computations, International Journal of Applied Mathematics and Computer Science 16(1): 59–84.
[17] Mengshoel, O. and Goldberg, D. (2008). The crowding approach to niching in genetic algorithms, Evolutionary Computation 16(3): 315–354.
[18] Obuchowicz, A. (1997). The evolutionary search with soft selection and deterioration of the objective function, Proceedings of the 6th International Conference on Intelligent Information Systems, Zakopane, Poland, pp. 288–295.
[19] Obuchowicz, A. and Prętki, P. (2004). Phenotypic evolution with a mutation based on symmetric α-stable distributions, International Journal of Applied Mathematics and Computer Science 14(3): 289–316.
[20] Rogers, A. and Prügel-Bennett, A. (1999). Genetic drift in genetic algorithm selection schemes, IEEE Transactions on Evolutionary Computation 3(4): 298–303.
[21] Sareni, B. and Krähenbühl, L. (1998). Fitness sharing and niching methods revisited, IEEE Transactions on Evolutionary Computation 2(3): 97–106.
[22] Tomassini, M. (2005). Spatially Structured Evolutionary Algorithms, Springer-Verlag New York, Inc., Secaucus, NJ.
[23] Torn, A. and Zilinskas, A. (1989). Global Optimization, Springer-Verlag, New York, NY.