Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_4_a11, author = {Abdallah, L. and Shimshoni, I.}, title = {Lookahead selective sampling for incomplete data}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {871--884}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a11/} }
TY - JOUR AU - Abdallah, L. AU - Shimshoni, I. TI - Lookahead selective sampling for incomplete data JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 871 EP - 884 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a11/ LA - en ID - IJAMCS_2016_26_4_a11 ER -
%0 Journal Article %A Abdallah, L. %A Shimshoni, I. %T Lookahead selective sampling for incomplete data %J International Journal of Applied Mathematics and Computer Science %D 2016 %P 871-884 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a11/ %G en %F IJAMCS_2016_26_4_a11
Abdallah, L.; Shimshoni, I. Lookahead selective sampling for incomplete data. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 4, pp. 871-884. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_4_a11/
[1] Abdallah, L. and Shimshoni, I. (2013). An ensemble-clustering-based distance metric and its applications, International Journal of Business Intelligence and Data Mining 8(3): 264–287.
[2] Abdallah, L. and Shimshoni, I. (2014). Mean shift clustering algorithm for data with missing values, 14th International Conference of DaWaK, Munich, Germany, pp. 426–438.
[3] Abdallah, L. and Shimshoni, I. (2016). k-means over incomplete datasets using mean Euclidean distance, 12th International Conference on Machine Learning and Data Mining, New York, NY, pp. 113–127.
[4] Bai, X., Zhang, M., Wu, Q., Zheng, R., Zhao, H. and Wei, W. (2015). A novel data filling algorithm for incomplete information system based on valued limited tolerance relation, International Journal of Database Theory and Application 8(6): 149–164.
[5] Clark, P.G., Grzymala-Busse, J.W. and Rzasa, W. (2013). Consistency of incomplete data, 2nd International Conference on Data Technologies and Applications, Marrakech, Morocco, pp. 80–87.
[6] Clustering datasets (2008). http://cs.joensuu.fi/sipu/datasets/, University of Eastern Finland, Joensuu.
[7] Dasgupta, S. and Hsu, D. (2008). Hierarchical sampling for active learning, 25th International Conference on Machine Learning, Helsinki, Finland, pp. 208–215.
[8] Dekel, O., Gentile, C. and Sridharan, K. (2012). Selective sampling and active learning from single and multiple teachers, Journal of Machine Learning Research 13(1): 2655–2697.
[9] Donders, A.R.T., van der Heijden, G.J., Stijnen, T. and Moons, K.G. (2006). Review: A gentle introduction to imputation of missing values, Journal of Clinical Epidemiology 59(10): 1087–1091.
[10] Grzymala-Busse, J. and Hu, M. (2001). A comparison of several approaches to missing attribute values in data mining, in W. Ziarko et al. (Eds.), Rough Sets and Current Trends in Computing, Springer, Berlin/Heidelberg, pp. 378–385.
[11] Grzymala-Busse, J.W. (2006). A rough set approach to data with missing attribute values, in J.F. Peters and Y. Yao (Eds.), Rough Sets and Knowledge Technology, Springer, Berlin/Heidelberg, pp. 58–67.
[12] Hospedales, T.M., Gong, S. and Xiang, T. (2013). Finding rare classes: Active learning with generative and discriminative models, IEEE Transactions on Knowledge and Data Engineering 25(2): 374–386.
[13] Ibrahim, J.G., Chen, M.-H., Lipsitz, S.R. and Herring, A.H. (2005). Missing-data methods for generalized linear models: A comparative review, Journal of the American Statistical Association 100(469): 332–346.
[14] Lewis, D. and Gale, W. (1994). A sequential algorithm for training text classifiers, 17th Annual International ACMSIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, pp. 3–12.
[15] Li, H., Shi, Y., Liu, Y., Hauptmann, A.G. and Xiong, Z. (2012). Cross-domain video concept detection: A joint discriminative and generative active learning approach, Expert Systems with Applications 39(15): 12220–12228.
[16] Lindenbaum, M., Markovitch, S. and Rusakov, D. (2004). Selective sampling for nearest neighbor classifiers, Machine Learning 54(2): 125–152.
[17] Little, R.J. (1988). Missing-data adjustments in large surveys, Journal of Business Economic Statistics 6(3): 287–296.
[18] Little, R.J. and Rubin, D.B. (2014). Statistical Analysis with Missing Data, John Wiley Sons. Hoboken, NJ.
[19] Lughofer, E. (2012). Hybrid active learning for reducing the annotation effort of operators in classification systems, Pattern Recognition 45(2): 884–896.
[20] MacQueen, J.B. (1967). Some methods for classification and analysis of multivariate observations, 5th Symposium on Math, Statistics, and Probability, Berkeley, CA, USA, pp. 281–297.
[21] Magnani, M. (2004). Techniques for dealing with missing data in knowledge discovery tasks, Obtido 15(01): 2007.
[22] Nowicki, R.K. (2010). On classification with missing data using rough-neuro-fuzzy systems, International Journal of Applied Mathematics and Computer Science 20(1): 55–67, DOI: 10.2478/v10006-010-0004-8.
[23] Nowicki, R.K., Nowak, B.A. and Woźniak, M. (2016). Application of rough sets in k nearest neighbours algorithm for classification of incomplete samples, in S. Kunifuji et al. (Eds.), Knowledge, Information and Creativity Support Systems, Springer, Berlin/Heidelberg, pp. 243–257.
[24] Stefanowski, J. and Tsoukias, A. (2001). Incomplete information tables and rough classification, Computational Intelligence 17(3): 545–566.
[25] Strehl, A. and Ghosh, J. (2002). Cluster ensembles—A knowledge reuse framework for combining multiple partitions, Journal of Machine Learning Research 3: 583–617.
[26] Tan, M. and Schlimmer, J. (1990). Two case studies in cost-sensitive concept acquisition, 8th National Conference on Artificial Intelligence, Boston, MA, USA, pp. 854–860.
[27] Turney, P. (1995). Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm, Journal of Artificial Intelligence Research 2(1): 369–409.
[28] Xu, Z., Akella, R. and Zhang, Y. (2007). Incorporating diversity and density in active learning for relevance feedback, in G. Amati et al. (Eds.), Advances in Information Retrieval, Springer, Berlin/Heidelberg, pp. 246–257.
[29] Zhang, S., Qin, Z., Ling, C. and Sheng, S. (2005). Missing is useful: Missing values in cost-sensitive decision trees, IEEE Transactions on Knowledge and Data Engineering 17(12): 1689–1693.
[30] Zhang, Y., Wen, J., Wang, X. and Jiang, Z. (2014). Semi-supervised learning combining co-training with active learning, Expert Systems with Applications 41(5): 2372–2378.