Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_3_a9, author = {Bilski, A. and Wojciechowski, J.}, title = {Automatic parametric fault detection in complex analog systems based on a method of minimum node selection}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {655--668}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a9/} }
TY - JOUR AU - Bilski, A. AU - Wojciechowski, J. TI - Automatic parametric fault detection in complex analog systems based on a method of minimum node selection JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 655 EP - 668 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a9/ LA - en ID - IJAMCS_2016_26_3_a9 ER -
%0 Journal Article %A Bilski, A. %A Wojciechowski, J. %T Automatic parametric fault detection in complex analog systems based on a method of minimum node selection %J International Journal of Applied Mathematics and Computer Science %D 2016 %P 655-668 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a9/ %G en %F IJAMCS_2016_26_3_a9
Bilski, A.; Wojciechowski, J. Automatic parametric fault detection in complex analog systems based on a method of minimum node selection. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 3, pp. 655-668. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a9/
[1] Aminian, F. and Modular, A.(2007). Fault-diagnostic system for analog electronic circuit using neural networks with wavelet transform as a preprocessor, IEEE Transactions on Instrumentation and Measurement 56(5): 1546–1554.
[2] Arabas, J. (2004). Lectures in Evolutionary Algorithms, WNT, Warsaw, (in Polish).
[3] Bilski, A. (2013). Diagnostic of complex analog systems with parametric faults using support vector machines, in T. Kwater and B. Twaróg (Eds.), Computing in Science and Technology 2012/13, University of Rzeszow, Rzeszów, pp. 7–24.
[4] Bilski, P. (2007). Automated diagnostic system using graph clustering algorithm and fuzzy logic method, 18th European Conference on Circuit Theory and Design 2007, Seville, Spain, pp. 779–782.
[5] Bilski, P. (2011). Automated selection of kernel parameters in diagnostics of analog systems, Przegląd Elektrotechniczny 87(5): 9–13.
[6] Bilski, P. and Wojciechowski, J. (2007). Automated diagnostics of analog systems using fuzzy logic approach, IEEE Transactions on Instrumentation and Measurement 56(6): 2175–2185.
[7] Bilski, P. and Wojciechowski, J. (2012). Current research trends in diagnostics of analog systems, 2012 International Conference on IEEE Signals and Electronic Systems (ICSES), Wrocław, Poland, pp. 1–11.
[8] Bushell, L. and Vishwani, D.A. (2002). Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits, Springer US, New York, NY.
[9] Czaja, Z. and Zielonko, R. (2004). On fault diagnosis of analogue electronic circuits based on transformations in multidimensional spaces, Measurement 35(3): 293–301.
[10] Chakrabarti, S., Cherubal, S. and Chatterjee, A. (1999). Fault diagnosis for mixed-signal electronic systems, IEEE Aerospace Conference, Snowmass at Aspen, CO, USA, pp. 169–179.
[11] Chatterjee, A., Kim, B. and Nagi, N. (1996 ). DC built-in self-test for linear analog circuits, IEEE Design and Test of Computers 13(2): 26–33.
[12] Fang, L., Plamen, K.N. and Sule, O. (2006 ). Parametric fault diagnosis for analog circuits using a Bayesian framework, Proceedings of the 24th IEEE VLSI Test Symposium VTS’06, Berkeley, CA, USA, pp. 272–277.
[13] Gendreau, M. (2003). An introduction to tabu search, in F. Glover and G.A. Kochenberger (Eds.), Handbook of Metaheuristics, Springer, US, New York, NY, pp. 37–54.
[14] Grzechca, D., Golonek, T. and Rutkowski, J. (2006). Analog fault AC dictionary creation—the fuzzy set approach, IEEE International Symposium on Circuits and Systems, Kos, Greece, pp. 5744–5747.
[15] Grzechca, D., Golonek, T. and Rutkowski, J. (2007). Simulated annealing with fuzzy fitness function for test frequencies selection, Proceedings of the IEEE Conference on Fuzzy Systems, London, UK, pp. 1–6.
[16] Grasso, F., Luchetta, A., Manetti, S. and Piccirilla, M.C. (2007). Method for the automatic selection of test frequencies in analog fault diagnosis, IEEE Transactions on Instrumentation and Measurement 56(6): 2322–2329.
[17] Golonek, T., Grzechca, D. and Rutkowski, J. (2008). Optimization of PWL analog testing excitation by means of genetic algorithm, Proceedings of the International Conference on Signals and Electronic Systems, Kraków, Poland, pp. 541–548.
[18] Golonek, T. and Rutkowski, J. (2007). Genetic-algorithm-based method for optimal analog test points selection, IEEE Transactions on Circuits and Systems II 54(2): 117–121.
[19] Guo, Y.-M., Wang, X.-T., Liu, Ch., Zheng, Y.-F. and Cai, X.-B. (2014). Electronic system fault diagnosis with optimized multi-kernel SVM by improved CPSO, Maintenance and Reliability 16(1): 85–91.
[20] Hochwald, W. and Bastian, J.D. (1979). A DC dictionary approach for analog fault dictionary determination, IEEE Transactions on Circuits and Systems 26(7): 523–529.
[21] Huertas, I.L (1993). Test and design for testability of analog and mixed-signal integrated circuits: Theoretical basis and pragmatical approaches, Proceedings of the European Conference on Circuit Theory and Design, Davos, Switzerland, pp. 1389–1407.
[22] Huang, K., Stratigopoulos, H.-G. and Mir, S. (2010). Fault diagnosis of analog circuits based on machine learning, 2010 Design, Automation and Test in Europe Conference and Exhibition (DATE 2010), Dresden, Germany, pp. 1761–1766.
[23] Jantos, P., Grzechca, D. and Rutkowski, J. (2009). A global parametric faults diagnosis with the use of artificial neural networks, European Conference on Circuit Theory and Design, Antalya, Turkey, pp. 651–655.
[24] Jantos, P., Grzechca, D. and Zielonko, R. (2009). Global parametric faults identification in analog electronic circuits, Metrology and Measurement Systems 16(3): 391–402.
[25] Korbicz, J., Obuchowicz, A. and Uciński, D. (1994). Artificial Neural Networks. Fundamentals and Applications, PLJ, Warsaw, (in Polish).
[26] Kuczyński, A. and Ossowski, M. (2009). Analog circuits diagnosis using discrete wavelet transform of supply current, Metrology and Measurement Systems 16(1): 77–85.
[27] Milor, L.S. (1998). A tutorial introduction to research on analog and mixed-signal circuit testing, IEEE Transactions on Circuits and Systems II 41(10): 1389–1407.
[28] Nguyen, W.H. and Golinval, J.-C. (2010). Fault detection based on kernel principal component analysis, Engineering Structures 32(11): pp. 3683–3691.
[29] Osowski, S. (2006). Artificial Neural Networks for Information Processing, Warsaw University of Technology Press, Warsaw, (in Polish).
[30] Ohletz, M. (1991). Hybrid built-in self-test for mixed analog/digital integrated circuits, European Test Conference, Munich, Germany, pp. 307–316.
[31] Pan, C. and Cheng, K.-T. (1995). Pseudorandom testing and signature analysis for mixed-signal systems, IEEE International Conference on Computer-Aided Design, San Jose, CA, USA, pp. 102–107.
[32] Prasad, V.C. and Babu, N.S.C. (2000). Selection of test nodes for analog fault diagnosis in dictionary approach, IEEE Transactions on Instrumentation and Measurement 49(6): 1289–1297.
[33] Rutkowski, J. and Grzechca, D. (2009). Fault diagnosis in analog electronic circuits—the SVM approach, Metrology and Measurement Systems 16(4): 583–598.
[34] Salama, A.E., Starzyk, J.A. and Bandler, J.W. (1984). A unified decomposition approach for fault location in large analog circuits, IEEE Transactions on Circuits and Systems 31(7): 609–622.
[35] Sałat, R. and Osowski, S. (2011). Support vector machine for soft fault location in electrical circuits, Journal of Intelligent and Fuzzy Systems 22(1): 21–31.
[36] Sen, N. and Saeks, R. (1979 ). Fault diagnosis for linear systems via multifrequency measurements, IEEE Transactions on Circuits and Systems 26(7): 457–465.
[37] Starzyk, J.A. and Dai, H. (1992 ). A decomposition approach for testing large analog networks, Journal of Electronic Testing: Theory and Applications 3(3): 181–195.
[38] Starzyk, J.A., Liu, D., Liu, Z.-H., Nelson, D.E. and Rutkowski, J. (2004). Entropy-based optimum test points selection for analog fault dictionary techniques, IEEE Transactions on Instrumentation and Measurement 53(2): 754–761.
[39] Sun, J., Wang, Ch., Sun, J. and Wang, L. (2013). Analog circuit soft fault diagnosis based on PCA and PSO-SVM, Journal of Networks 8(12): 2791–2796.
[40] Spina, R. and Upadhyaya, S. (1997). Linear circuit fault diagnosis using neuromorphic analyzers, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 44(3): 188–196.
[41] Tadeusiewicz, M., Hałgas, S. and Korzybski, M. (2011). Multiple catastrophic fault diagnosis of analog circuits considering the component tolerances, International Journal of Circuit Theory Application 44(3): 188–196.
[42] Tadeusiewicz, M. and Korzybski, M. (2000). A method for fault diagnosis in linear electronic circuits, International Journal of Circuit Theory and Applications 28(3): 245–262.
[43] Tadeusiewicz, M. and Hałgas, S. (2006). An algorithm for multiple fault diagnosis in analogue circuits, International Journal of Circuit Theory and Applications 34(6): 607–615.
[44] Widodo, A. and Bo-Suk, T. (2007). Support vector machine in machine condition monitoring and fault diagnosis, Mechanical Systems and Signal Processing 21(6): 2560–2574.
[45] Wang, P. and Yang, S. (2005). A new diagnosis approach for handling tolerance in analog and mixed-signal circuits by using fuzzy math, IEEE Transactions on Circuits and Systems I: Regular Papers 52(10): 2118–2127.
[46] Vapnik, V. and Cortes, C. (1995). Support-vector networks, Machine Learning 20(3): 273–297.