Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_3_a4, author = {Schwaller, B. and Ensminger, D. and Dresp-Langley, B. and Ragot, J.}, title = {State estimation for miso non-linear systems in controller canonical form}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {569--583}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a4/} }
TY - JOUR AU - Schwaller, B. AU - Ensminger, D. AU - Dresp-Langley, B. AU - Ragot, J. TI - State estimation for miso non-linear systems in controller canonical form JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 569 EP - 583 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a4/ LA - en ID - IJAMCS_2016_26_3_a4 ER -
%0 Journal Article %A Schwaller, B. %A Ensminger, D. %A Dresp-Langley, B. %A Ragot, J. %T State estimation for miso non-linear systems in controller canonical form %J International Journal of Applied Mathematics and Computer Science %D 2016 %P 569-583 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a4/ %G en %F IJAMCS_2016_26_3_a4
Schwaller, B.; Ensminger, D.; Dresp-Langley, B.; Ragot, J. State estimation for miso non-linear systems in controller canonical form. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 3, pp. 569-583. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a4/
[1] Alma, M. and Darouach, M. (2014). Adaptive observers design for a class of linear descriptor systems, Automatica 50(2): 578–583.
[2] Bestle, D. and Zeitz,M. (1983). Canonical form observer design for non-linear time-variable systems, International Journal of Control 38(2): 419–431.
[3] Bezzaoucha, S., Marx, B., Maquin, D. and Ragot, J. (2013). State and parameter estimation for time-varying systems: A Takagi–Sugeno approach, American Control Conference (ACC), Washington, DC, USA, pp. 1050–1055.
[4] Bodizs, L., Srinivasan, B. and Bonvin, D. (2011). On the design of integral observers for unbiased output estimation in the presence of uncertainty, Journal of Process Control 21(3): 379–390.
[5] Boker, A. and Khalil, H. (2013). Nonlinear observers comprising high-gain observers and extended Kalman filters, Automatica 49(12): 3583–3590.
[6] Bouraoui, I., Farza, M., Ménard, T., Abdennour, R.B., M’Saad, M. and Mosrati, H. (2015). Observer design for a class of uncertain nonlinear systems with sampled outputs: Application to the estimation of kinetic rates in bioreactors, Automatica 55: 78–87.
[7] Chen, W., Khan, A.Q., Abid, M. and Ding, S.X. (2011). Integrated design of observer based fault detection for a class of uncertain nonlinear systems, International Journal of Applied Mathematics and Computer Science 21(3): 423–430, DOI: 10.2478/v10006-011-0031-0.
[8] Ciccarella, G., Mora, M.D. and Germani, A. (1993). A Luenberger-like observer for nonlinear systems, International Journal of Control 57(3): 537–556.
[9] Efimov, D. and Fridman, L. (2011). Global sliding-mode observer with adjusted gains for locally Lipschitz systems, Automatica 47(3): 565–570.
[10] Farza, M., Bouraoui, I., Ménard, T., Abdennour, R.B. and M’Saad, M. (2014). Adaptive observers for a class of uniformly observable systems with nonlinear parametrization and sampled outputs, Automatica 50(11): 2951–2960.
[11] Farza, M., M’Saad, M., Triki, M. and Maatoug, T. (2011). High gain observer for a class of non-triangular systems, Systems and Control Letters 60(1): 27–35.
[12] Fliess, M. (1990). Generalized controller canonical forms for linear and nonlinear dynamics, IEEE Transactions on Automatic Control 35(9): 994–1001.
[13] Gauthier, J. and Bornard, G. (1981). Observability for any u(t) of a class of nonlinear systems, IEEE Transactions on Automatic Control AC-26(4): 922–926.
[14] Gauthier, J., Hammouri, H. and Othman, S. (1992). A simple observer for nonlinear systems. Applications to bioreactors, IEEE Transactions on Automatic Control 37(6): 875–880.
[15] Ghosh, D., Saha, P. and Chowdhury, A. (2010). Linear observer based projective synchronization in delay Roessler system, Communications in Nonlinear Science and Numerical Simulation 15(6): 1640–1647.
[16] Gille, J., Decaulne, P. and Pélegrin, M. (1988). Systèmes asservis non linéaires, 5 ième edn, Dunod, Paris.
[17] Gißler, J. and Schmid, M. (1990). Vom Prozeß zur Regelung. Analyse, Entwurf, Realisierung in der Praxis, Siemens, Berlin/München.
[18] Glumineau, A. and Lôpez-Morales, V. (1999). Transformation to State Affine System and Observer Design, Lecture Notes in Control and Information Science, Vol. 244, Springer, London.
[19] Guerra, T., Estrada-Manzo, V. and Lendek, Z. (2015). Observer design for Takagi–Sugeno descriptor models: An LMI approach, Automatica 52: 154–159.
[20] Hermann, R. and Krener, A. (1977). Nonlinear controllability and observability, IEEE Transactions on Automatic Control AC-22(5): 728–740.
[21] Krener, A. and Isidori, A. (1983). Linearization by output injection and nonlinear observers, Systems Control Letters 3(1): 47–52.
[22] Lorenz, E. (1963). Deterministic nonperiodic flow, Journal of the Atmospheric Sciences 20(2): 130–141.
[23] Luenberger, D. (1966). Observers for multivariable systems, IEEE Transactions on Automatic Control AC-11(2): 190–197.
[24] Martínez-Guerra, R., Mata-Machuca, J., Aguilar-López, R. and Rodríguez-Bollain, A. (2011). Applications of Chaos and Nonlinear Dynamics in Engineering, Vol. 1, Springer-Verlag, Berlin/Heidelberg.
[25] Mazenc, F. and Dinh, T. (2014). Construction of interval observers for continuous-time systems with discrete measurements, Automatica 50(10): 2555–2560.
[26] Menini, L. and Tornambè, A. (2011). Design of state detectors for nonlinear systems using symmetries and semi-invariants, Systems and Control Letters 60(2): 128–137.
[27] Mobki, H., Sadeghia, M. and Rezazadehb, G. (2015). Design of direct exponential observers for fault detection of nonlinear MEMS tunable capacitor, IJE Transactions A: Basics 28(4): 634–641.
[28] Morales, A. and Ramirez, J. (2002). A PI observer for a class of nonlinear oscillators, Physics Letters A 297(3–4): 205–209.
[29] Raghavan, S. and Hedrick, J. (1994). Observer design for a class of nonlinear systems, International Journal of Control 59(2): 515–528.
[30] Rauh, A., Butt, S.S. and Aschemann, H. (2013). Nonlinear state observers and extended Kalman filters for battery systems, International Journal of Applied Mathematics and Computer Science 23(3): 539–556, DOI: 10.2478/amcs-2013-0041.
[31] Röbenack, K. and Lynch, A. (2004). An efficient method for observer design with approximately linear error dynamics, International Journal of Control 77(7): 607–612.
[32] Röbenack, K. and Lynch, A.F. (2006). Observer design using a partial nonlinear observer canonical form, International Journal of Applied Mathematics and Computer Science 16(3): 333–343.
[33] Schwaller, B., Ensminger, D., Dresp-Langley, B. and Ragot, J. (2013). State estimation for a class of nonlinear systems, International Journal of Applied Mathematics and Computer Science 23(2): 383–394, DOI: 10.2478/amcs-2013-0029.
[34] Söffker, D., Yu, T. and Müller, P. (1995). State estimation of dynamical systems with nonlinearities by using proportional-integral observers, International Journal of Systems Science 26(9): 1571–1582.
[35] Thabet, R., Raïssi, T., Combastel, C., Efimov, D. and Zolghadri, A. (2014). An effective method to interval observer design for time-varying systems, Automatica 50(10): 2677–2684.
[36] Tornambè, A. (1992). High-gain observers for non-linear systems, International Journal of Systems Science 23(9): 1475–1489.
[37] Tyukina, I., Steurb, E., Nijmeijerc, H. and van Leeuwenb, C. (2013). Adaptive observers and parameter estimation for a class of systems nonlinear in the parameters, Automatica 49(8): 24092423.
[38] Veluvolu, K., Soh, Y. and Cao, W. (2007). Robust observer with sliding mode estimation for nonlinear uncertain systems, IET Control Theory and Applications 1(5): 15331540.
[39] Zeitz, M. (1985). Canonical forms for nonlinear-systems, in B. Jakubczyk et al. (Eds.), Proceedings of the Conference on Geometric Theory of Nonlinear Control Systems, Wrocław Technical University Press, Wrocław, pp. 255–278.
[40] Zeitz, M. (1987). The extended Luenberger observer for nonlinear systems, Systems and Control Letters Archive 9(2): 149–156.
[41] Zheng, G., Boutat, D. and Barbot, J. (2009). Multi-output dependent observability normal form, Nonlinear Analysis: Theory, Methods and Applications 70(1): 404–418.