Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_3_a3, author = {Karczewska, A. and Rozmej, P. and Szczeci\'nski, M. and Boguniewicz, B.}, title = {A finite element method for extended {KdV} equations}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {555--567}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a3/} }
TY - JOUR AU - Karczewska, A. AU - Rozmej, P. AU - Szczeciński, M. AU - Boguniewicz, B. TI - A finite element method for extended KdV equations JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 555 EP - 567 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a3/ LA - en ID - IJAMCS_2016_26_3_a3 ER -
%0 Journal Article %A Karczewska, A. %A Rozmej, P. %A Szczeciński, M. %A Boguniewicz, B. %T A finite element method for extended KdV equations %J International Journal of Applied Mathematics and Computer Science %D 2016 %P 555-567 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a3/ %G en %F IJAMCS_2016_26_3_a3
Karczewska, A.; Rozmej, P.; Szczeciński, M.; Boguniewicz, B. A finite element method for extended KdV equations. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 3, pp. 555-567. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a3/
[1] Ablowitz, M. and Segur, H. (1979). On the evolution of packets of water waves, Journal of Fluid Mechanics 92(4): 691–715.
[2] Ali, A. and Kalisch, H. (2014). On the formulation of mass, momentum and energy conservation in the KdV equation, Acta Applicandae Mathematicae 133(1): 113–131.
[3] Bona, J., Chen, H., Karakashian, O. and Xing, Y. (2013). Conservative, discontinuous-Galerkin methods for the generalized Korteweg–de Vries equation, Mathematics of Computation 82(283): 1401–1432.
[4] Burde, G. and Sergyeyev, A. (2013). Ordering of two small parameters in the shallow water wave problem, Journal of Physics A 46(7): 075501.
[5] Cui, Y. and Ma, D. (2007). Numerical method satisfying the first two conservation laws for the Korteweg–de Vries equation, Journal of Computational Physics 227(1): 376–399.
[6] Debussche, A. and Printems, I. (1999). Numerical simulation of the stochastic Korteweg–de Vries equation, Physica D 134(2): 200–226.
[7] Dingemans, M. (1997). Water Wave Propagation over Uneven Bottoms, World Scientific, Singapore.
[8] Drazin, P.G. and Johnson, R.S. (1989). Solitons: An Introduction, Cambridge University Press, Cambridge.
[9] Fornberg, B. and Whitham, G.B. (1978). A numerical and theoretical study of certain nonlinear wave phenomena, Philosophical Transactions A of the Royal Society 289(1361): 373–404.
[10] Goda, K. (1975). On instability of some finite difference schemes for the Korteweg–de Vries equation, Journal of the Physical Society of Japan 39(1): 229–236.
[11] Green, A.E. and Naghdi, P.M. (1976). A derivation of equations for wave propagation in water of variable depth, Journal of Fluid Mechanics 78(2): 237–246.
[12] Grimshaw, R. (1970). The solitary wave in water of variable depth, Journal of Fluid Mechanics 42(3): 639–656.
[13] Grimshaw, R.H.J. and Smyth, N.F. (1986). Resonant flow of a stratified fluid over topography, Journal of Fluid Mechanics 169: 429–464.
[14] Grimshaw, R., Pelinovsky, E. and Talipova, T. (2008). Fission of a weakly nonlinear interfacial solitary wave at a step, Geophysical and Astrophysical Fluid Dynamics 102(2): 179–194.
[15] Infeld, E. and Rowlands, G. (2000). Nonlinear Waves, Solitons and Chaos, 2nd Edition, Cambridge University Press, Cambridge.
[16] Kamchatnov, A.M., Kuo, Y.H., Lin, T.C., Horng, T.L., Gou, S.C., Clift, R., El, G.A. and Grimshaw, R.H.J. (2012). Undular bore theory for the Gardner equation, Physical Review E 86: 036605.
[17] Karczewska, A., Rozmej, P. and Infeld, E. (2014a). Shallow-water soliton dynamics beyond the Korteweg–de Vries equation, Physical Review E 90: 012907.
[18] Karczewska, A., Rozmej, P. and Rutkowski, L. (2014b). A new nonlinear equation in the shallow water wave problem, Physica Scripta 89(5): 054026.
[19] Karczewska, A., Rozmej, P. and Infeld, E. (2015). Energy invariant for shallow water waves and the Korteweg–de Vries equation: Doubts about the invariance of energy, Physical Review E 92: 053202.
[20] Karczewska, A., Szczeciński, M., Rozmej, P., and Boguniewicz, B. (2016). Finite element method for stochastic extended KdV equations, Computational Methods in Science and Technology 22(1): 19–29.
[21] Kim, J.W., Bai, K.J., Ertekin, R.C. and Webster, W.C. (2001). A derivation of the Green–Naghdi equations for irrotational flows, Journal of Engineering Mathematics 40: 17–42.
[22] Marchant, T. and Smyth, N. (1990). The extended Korteweg–de Vries equation and the resonant flow of a fluid over topography, Journal of Fluid Mechanics 221(1): 263–288.
[23] Marchant, T. and Smyth, N. (1996). Soliton interaction for the extended Korteweg–de Vries equation, IMA Journal of Applied Mathematics 56: 157–176.
[24] Mei, C. and Le Méhauté, B. (1966). Note on the equations of long waves over an uneven bottom, Journal of Geophysical Research 71(2): 393–400.
[25] Miura, R.M., Gardner, C.S. and Kruskal, M.D. (1968). Korteweg–de Vries equation and generalizations, II: Existence of conservation laws and constants of motion, Journal of Mathematical Physics 9(8): 1204–1209.
[26] Nadiga, B., Margolin, L. and Smolarkiewicz, P. (1996). Different approximations of shallow fluid flow over an obstacle, Physics of Fluids 8(8): 2066–2077.
[27] Nakoulima, O., Zahibo, N. Pelinovsky, E., Talipova, T. and Kurkin, A. (2005). Solitary wave dynamics in shallow water over periodic topography, Chaos 15(3): 037107.
[28] Pelinovsky, E., Choi, B., Talipova, T., Woo, S. and Kim, D. (2010). Solitary wave transformation on the underwater step: Theory and numerical experiments, Applied Mathematics and Computation 217(4): 1704–1718.
[29] Pudjaprasetya, S.R. and van Greoesen, E. (1996). Uni-directional waves over slowly varying bottom, II: Quasi-homogeneous approximation of distorting waves, Wave Motion 23(1): 23–38.
[30] Remoissenet, M. (1999). Waves Called Solitons: Concepts and Experiments, Springer, Berlin.
[31] Skogstad, J. and Kalisch, H. (2009). A boundary value problem for the KdV equation: Comparison of finite difference and Chebyshev methods, Mathematics and Computers in Simulation 80(1): 151–163.
[32] Smyth, N.F. (1987). Modulation theory solution for resonant flow over topography, Proceedings of the Royal Society of London A 409(1836): 79–97.
[33] Taha, T.R. and Ablowitz, M.J. (1984). Analytical and numerical aspects of certain nonlinear evolution equations III: Numerical, Korteweg–de Vries equation, Journal of Computational Physics 55(2): 231–253.
[34] van Greoesen, E. and Pudjaprasetya, S.R. (1993). Uni-directional waves over slowly varying bottom, I: Derivation of a KdV-type of equation, Wave Motion 18(4): 345–370.
[35] Whitham, G.B. (1974). Linear and Nonlinear Waves, Wiley, New York, NY.
[36] Yi, N., Huang, Y. and Liu, H. (2013). A direct discontinous Galerkin method for the generalized Korteweg–de Vries equation: Energy conservation and boundary effect, Journal of Computational Physics 242: 351–366.
[37] Yuan, J.-M., Shen, J. and Wu, J. (2008). A dual Petrov–Galerkin method for the Kawahara-type equations, Journal of Scientific Computing 34: 48–63.
[38] Zabusky, N.J. and Kruskal, M.D. (1965). Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states, Physical Review Letters 15(6): 240–243.