Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_3_a14, author = {Koczkodaj, W. W. and Szybowski, J.}, title = {The limit of inconsistency reduction in pairwise comparisons}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {721--729}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a14/} }
TY - JOUR AU - Koczkodaj, W. W. AU - Szybowski, J. TI - The limit of inconsistency reduction in pairwise comparisons JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 721 EP - 729 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a14/ LA - en ID - IJAMCS_2016_26_3_a14 ER -
%0 Journal Article %A Koczkodaj, W. W. %A Szybowski, J. %T The limit of inconsistency reduction in pairwise comparisons %J International Journal of Applied Mathematics and Computer Science %D 2016 %P 721-729 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a14/ %G en %F IJAMCS_2016_26_3_a14
Koczkodaj, W. W.; Szybowski, J. The limit of inconsistency reduction in pairwise comparisons. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 3, pp. 721-729. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a14/
[1] Aczel, J. (1948). On means values, Bulletin of the American Mathematical Society 18(4): 443–454, DOI: 10.2478/v10006-008-0039-2.
[2] Aczel, J. and Saaty, T. (1983). Procedures for synthesizing ratio judgements, Journal of Mathematical Psychology 27(1): 93–102.
[3] Arrow, K. (1950). A difficulty in the concept of social welfare, Journal of Political Economy 58(4): 328–346.
[4] Bauschke, H. and Borwein, J. (1996). Projection algorithms for solving convex feasibility problems, SIAM Review 38(3): 367–426.
[5] Dong, Y., Xu, Y., Li, H. and Dai, M. (2008). A comparative study of the numerical scales and the prioritization methods in AHP, European Journal of Operational Research 186(1): 229–242.
[6] Faliszewski, P., Hemaspaandra, E. and Hemaspaandra, L. (2010). Using complexity to protect elections, Communications of the ACM 53(11): 74–82.
[7] Holsztynski, W. and Koczkodaj, W. (1996). Convergence of inconsistency algorithms for the pairwise comparisons, Information Processing Letters 59(4): 197–202.
[8] Jensen, R. (1984). An alternative scaling method for priorities in hierarchical structures, Journal of Mathematical Psychology 28(3): 317–332.
[9] Kendall, M. and Smith, B. (1940). On the method of paired comparisons, Biometrika 31: 324–345.
[10] Koczkodaj, W. (1993). A new definition of consistency of pairwise comparisons, Mathematical and Computer Modelling 18(7): 79–84.
[11] Koczkodaj, W., Kosiek, M., Szybowski, J. and Xu, D. (2015). Fast convergence of distance-based inconsistency in pairwise comparisons, Fundamenta Informaticae 137(3): 355–367.
[12] Koczkodaj, W. and Szarek, S. (2010). On distance-based inconsistency reduction algorithms for pairwise comparisons, Logic Journal of the IGPL 18(6): 859–869.
[13] Koczkodaj, W. and Szybowski, J. (2015). Pairwise comparisons simplified, Applied Mathematics and Computation 253: 387–394.
[14] Llull, R. (1299). Ars Electionis (On the Method of Elections), Manuscript.