Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_3_a12, author = {R\'o\.zycki, R. and Walig\'ora, G. and W\k{e}glarz, J.}, title = {Scheduling preemptable jobs on identical processors under varying availability of an additional continuous resource}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {693--706}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a12/} }
TY - JOUR AU - Różycki, R. AU - Waligóra, G. AU - Węglarz, J. TI - Scheduling preemptable jobs on identical processors under varying availability of an additional continuous resource JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 693 EP - 706 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a12/ LA - en ID - IJAMCS_2016_26_3_a12 ER -
%0 Journal Article %A Różycki, R. %A Waligóra, G. %A Węglarz, J. %T Scheduling preemptable jobs on identical processors under varying availability of an additional continuous resource %J International Journal of Applied Mathematics and Computer Science %D 2016 %P 693-706 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a12/ %G en %F IJAMCS_2016_26_3_a12
Różycki, R.; Waligóra, G.; Węglarz, J. Scheduling preemptable jobs on identical processors under varying availability of an additional continuous resource. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 3, pp. 693-706. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a12/
[1] Błażewicz, J., Ecker, K., Schmidt, G., Pesch, E. and Węglarz, J. (2007). Handbook of Scheduling: From Theory to Applications, Springer, Berlin.
[2] Gorczyca, M. and Janiak, A. (2010). Resource level minimization in the discrete-continuous scheduling, European Journal of Operational Research 203(1): 32–41.
[3] Janiak, A. (1991). Single machine scheduling problem with a common deadline and resource dependent release dates, European Journal of Operational Research 53(3): 317–325.
[4] Karmarkar, N.K. (1984). A new polynomial time algorithm for linear programming, Combinatorica 4(4): 373–395.
[5] Kis, T. (2005). A branch-and-cut algorithm for scheduling of projects with variable-intensity activities, Mathematical Programming 103(3): 515–139.
[6] Leachman, R.C. (1983). Multiple resource leveling in construction systems through variation of activity intensities, Naval Research Logistics Quarterly 30(3): 187–198.
[7] Leachman, R.C., Dincerler, A. and Kim, S. (1990). Resource-constrained scheduling of projects with variable-intensity activities, IIE Transactions 22(1): 31–39.
[8] Różycki, R. and Węglarz, J. (2012). Power-aware scheduling of preemptable jobs on identical parallel processors to meet deadlines, European Journal of Operational Research 218(1): 68–75.
[9] Waligóra, G. (2011). Heuristic approaches to discrete-continuous project scheduling problems to minimize the makespan, Computational Optimization and Applications 48(2): 399–421.
[10] Waligóra, G. (2014). Discrete-continuous project scheduling with discounted cash inflows and various payment models—a review of recent results, Annals of Operations Research 213(1): 319–340.
[11] Węglarz, J. (1976). Time-optimal control of resource allocation in a complex of operations framework, IEEE Transactions on Systems, Man and Cybernetics 6(11): 783–788.