Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_3_a10, author = {Mart{\'\i}nez, P. A. and Castel\'an, M. and Arechavaleta, G.}, title = {Vision based persistent localization of a humanoid robot for locomotion tasks}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {669--682}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a10/} }
TY - JOUR AU - Martínez, P. A. AU - Castelán, M. AU - Arechavaleta, G. TI - Vision based persistent localization of a humanoid robot for locomotion tasks JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 669 EP - 682 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a10/ LA - en ID - IJAMCS_2016_26_3_a10 ER -
%0 Journal Article %A Martínez, P. A. %A Castelán, M. %A Arechavaleta, G. %T Vision based persistent localization of a humanoid robot for locomotion tasks %J International Journal of Applied Mathematics and Computer Science %D 2016 %P 669-682 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a10/ %G en %F IJAMCS_2016_26_3_a10
Martínez, P. A.; Castelán, M.; Arechavaleta, G. Vision based persistent localization of a humanoid robot for locomotion tasks. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 3, pp. 669-682. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_3_a10/
[1] Alcantarilla, P.-F., Stasse, O., Druon, S., Bergasa, L.-M. and Dellaert, F. (2013). How to localize humanoids with a single camera?, Autonomous Robots 38(1–2): 47–71.
[2] Davison, A., Reid, I.-D., Molton, N.-D. and Stasse, O. (2007). Monoslam: Real-time single camera SLAM, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6): 1052–1067.
[3] Delfin, J., Becerra, H.M. and Arechavaleta, G. (2014). Visual path following using a sequence of target images and smooth robot velocities for humanoid navigation, IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain, pp. 354–359.
[4] Dellaert, F. and Kaess, M. (2006). Square root SLAM: Simultaneous localization and mapping via square root information smoothing, International Journal of Robotics Research 25(12): 1181–1203.
[5] Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localization and mapping: Part I, IEEE Robotics and Automation Magazine 13(2): 99–110.
[6] Endres, F., Hess, J., Sturm, J., Cremers, D. and Burgard, W. (2014). 3-D mapping with an RGB-D camera, IEEE Transactions on Robotics 30(1): 177–187.
[7] Gouaillier, D., Collette, C. and Kilner, C. (2010). Omni-directional closed-loop walk for NAO, IEEERAS International Conference on Humanoid Robots, Nashville, TN, USA, pp. 448–454.
[8] Hartley, R.I. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision, Cambridge University Press, New York, NY.
[9] Henry, P., Krainin, M., Herbst, E., Ren, X. and Fox, D. (2012). RGB-D mapping: Using kinect-style depth cameras for dense 3D modeling of indoor environments, International Journal of Robotics Research 31(5): 647–663.
[10] Herdt, A., Holger, D.,Wieber, P.-B., Dimitrov, D., Mombaur, K. and Moritz, D. (2010). Online walking motion generation with automatic foot step placement, Advanced Robotics 24(5–6): 719–737.
[11] Hornung, A., Osswald, S., Maier, D. and Bennewitz, M. (2014). Monte Carlo localization for humanoid robot navigation in complex indoor environments, International Journal of Humanoid Robotics 11(02), Article ID: 1441002.
[12] Hornung, A., Wurm, K. and Bennewitz, M. (2010). Humanoid robot localization in complex indoor environments, IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, pp. 1690–1695.
[13] Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C. and Burgard, W. (2013). OctoMap: An efficient probabilistic 3D mapping framework based on octrees, Autonomous Robots 34(3): 189–206.
[14] Ido, J., Shimizu, Y., Matsumoto, Y. and Ogasawara, T. (2009). Indoor navigation for a humanoid robot using a view sequence, International Journal of Robotics Research 28(2): 315–325.
[15] Kajita, S., Kanehiro, F., Fujiwara, K., Harada, K., Yokoi, K. and Hirukawa, H. (2003). Biped walking pattern generation by using preview control of zero-moment point, IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp. 1620–1626.
[16] Kerl, C., Sturm, J. and Cremers, D. (2013a). Dense visual SLAM for RGB-D cameras, IEEE International Conference on Intelligent Robots and Systems, Tokyo, Japan, pp. 2100–2106.
[17] Kerl, C., Sturm, J. and Cremers, D. (2013b). Robust odometry estimation for RGB-D cameras, IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, pp. 3748–3754.
[18] Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small AR workspaces, 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR’ 07), Nara, Japan, pp. 225–234.
[19] Lourakis, M. A. and Argyros, A. (2009). SBA: A software package for generic sparse bundle adjustment, ACM Transactions on Mathematical Software 1(36): 1–30.
[20] Maier, D., Hornung, A. and Bennewitz, M. (2012). Real-time navigation in 3D environments based on depth camera data, IEEE International Conference on Humanoid Robots, Osaka, Japan, pp. 692–697.
[21] Martínez, P.A., Varas, D., Castelán, M., Camacho, M., Marques, F. and Arechavaleta, G. (2014). 3D shape reconstruction from a humanoid generated video sequence, IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain, pp. 699–706.
[22] Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F. and Sayd, P. (2009). Generic and real-time structure from motion using local bundle adjustment, Image and Vision Computing 8(27): 1178–1193.
[23] Obwald, S., Hornung, A. and Bennewitz, M. (2012). Improved proposals for highly accurate localization using range and vision data, IEEE/RSJ International Conference on Intelligent Robots and System, Vilamoura, Portugal, pp. 1809–1814.
[24] Oriolo, G., Paolillo, A., Rosa, L. and Vendittelli, M. (2013). Vision-based trajectory control for humanoid navigation, IEEE-RAS International Conference on Humanoid Robots, Atlanta, GA, USA, pp. 113–123.
[25] Oriolo, G., Paolillo, A., Rosa, L. and Vendittelli, M. (2016). Humanoid odometric localization integrating kinematic, inertial and visual information, Autonomous Robots 40(5): 867–879.
[26] Rosten, E. and Drummond, T. (2005). Fusing points and lines for high performance tracking, 10th IEEE International Conference on Computer Vision, Beijing, China, Vol. 2, pp. 1508–1515.
[27] Royer, E., Lhuillier, M., Dhome, M. and Lavest, J.M. (2007). Monocular vision for mobile robot localization and autonomous navigation, International Journal of Computer Vision 74(3): 237–260.
[28] Santana, A.M. and Medeiros, A.A.D. (2012). Straight-lines modelling using planar information for monocular SLAM, International Journal of Applied Mathematics and Computer Science 22(2): 409–421, DOI: 10.2478/v10006-012-0031-8.
[29] Scaramuzza, D. and Fraundorfer, F. (2011). Visual odometry, IEEE Robotics and Automation Magazine 18(4): 80–92.
[30] Segal, A., Haehnel, D. and Thrun, S. (2009). Generalized-ICP, in J. Trinkle et al. (Eds.), Proceedings of Robotics: Science and Systems, The MIT Press, Cambridge, MA.
[31] Skrzypczyński, P. (2009). Simultaneous localization and mapping: A feature-based probabilistic approach, International Journal of Applied Mathematics and Computer Science 19(4): 575–588, DOI: 10.2478/v10006-009-0045-z.
[32] Stasse, O., Davison, A., Sellaouti, R. and Yokoi, K. (2006). Real-time 3D SLAM for a humanoid robot considering pattern generator information, IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 348–355.
[33] Strasdat, H., Montiel, J. and Davison, A. (2010). Real-time monocular SLAM: Why filter?, IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, pp. 2657–2664.
[34] Sturm, J., Engelhard, N., Endres, F., Burgard, W. and Cremers, D. (2012). A benchmark for the evaluation of RGB-D SLAM systems, IEEE International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, pp. 573–580.
[35] Triggs, B., McLauchlan, P., Hartley, R. and Fitzgibbon, A. (1999). Bundle adjustment a modern synthesis, in B. Triggs et al. (Eds.), Vision Algorithms: Theory and Practice, Lecture Notes in Computer Science, Vol. 1883, Springer-Verlag, London, pp. 298–372.
[36] Wurm, K. M., Hornung, A., Bennewitz, M., Stachniss, C. and Burgard, W. (2010). OctoMap: A probabilistic, flexible, and compact 3D map representation for robotic systems, IEEE International Conference on Robotics and Automation, Anchorage, AK, USA.