Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_2_a4, author = {Garc{\'\i}a-Rodr{\'\i}guez, R. and Segovia-Palacios, V. and Parra-Vega, V. and Villalva-Lucio, M.}, title = {Dynamic optimal grasping of a circular object with gravity using robotic soft-fingertips}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {309--323}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a4/} }
TY - JOUR AU - García-Rodríguez, R. AU - Segovia-Palacios, V. AU - Parra-Vega, V. AU - Villalva-Lucio, M. TI - Dynamic optimal grasping of a circular object with gravity using robotic soft-fingertips JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 309 EP - 323 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a4/ LA - en ID - IJAMCS_2016_26_2_a4 ER -
%0 Journal Article %A García-Rodríguez, R. %A Segovia-Palacios, V. %A Parra-Vega, V. %A Villalva-Lucio, M. %T Dynamic optimal grasping of a circular object with gravity using robotic soft-fingertips %J International Journal of Applied Mathematics and Computer Science %D 2016 %P 309-323 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a4/ %G en %F IJAMCS_2016_26_2_a4
García-Rodríguez, R.; Segovia-Palacios, V.; Parra-Vega, V.; Villalva-Lucio, M. Dynamic optimal grasping of a circular object with gravity using robotic soft-fingertips. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 2, pp. 309-323. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a4/
[1] Akella, P. and Cutkosky, M. (1989). Manipulating with soft-fingers, IEEE International Conference on Robotics and Automation, Scottsdale, AZ, USA, pp. 767–769.
[2] Arimoto, S. (2007). Control Theory of Multi Fingered Hands, Springer-Verlag, London.
[3] Arimoto, S., Nguyen, P.T.A., Han, H.Y. and Doulgeri, Z. (2000). Dynamics and control of a set of dual fingers with soft tips, Robotica 18(1): 71–80.
[4] Baumgarte, J. (1971). Stabilization of constraints and integrals of motion in dynamical systems, Computer Methods in Applied Mechanics and Engineering 1: 1–16.
[5] Bogacki, P. and Shampine, L.F. (1989). A 3(2) pair of Runge–Kutta formulas, Applied Mathematics Letters 2(4): 321–325.
[6] Coelho, J.A. and Grupen, R. (1994). Optimal multifingered grasp synthesis, IEEE International Conference on Robotics and Biomimetics, San Diego, CA, USA, pp. 1937–1942.
[7] Cole, A., Hauser, J. and Sastry, S. (1989). Kinematics and control of multifingered hands with rolling contact, IEEE Transactions on Automatic Control 34(4): 398–404.
[8] Harada, K. and Kaneko, M. (2001). Rolling based manipulation under neighborhood equilibrium, IEEE International Conference on Robotics and Automation, Seoul, Korea, pp. 2492–2498.
[9] Ito, S., Mizukoshi, Y. and Sasaki, M. (2007). Numerical analysis for optimal posture of circular object grasped with frictions, IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, pp. 2492–2498.
[10] Jia, Y.B. (2000). Grasping curved objects through rolling, IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, pp. 377–382.
[11] Kim, B., Oh, S., Yi, B. and Suh, I.H. (2001). Optimal grasping based on non-dimensionalized performance indices, IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, HI, USA, pp. 949–956.
[12] Marigo, A. and Bichi, A. (2007). Rolling bodies with regular surface: Controllability theory and applications, IEEE Transactions on Automatic Control 45(9): 1586–1599.
[13] Nakashima, A., Nagase, K. and Hayakawa, Y. (2005). Simultaneous control of grasping/manipulation and contact points with rolling contact, 16th IFAC World Congress, Prague, Czech Republic, pp. 415–420.
[14] Nguyen, P.T.A., Ozawa, R. and Arimoto, S. (2006). Manipulation of a circular object by a pair of multi-DOF robotic fingers, IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 5669–5674.
[15] Ozawa, R., Arimoto, S., Nguyen, P.T.A., Yoshida, M. and Bae, J.H. (2004). Manipulation of a circular object in a horizontal plane by two finger robots, IEEE International Conference on Robotics and Biomimetics, Shenyang, China, pp. 517–522.
[16] Ozawa, R., Arimoto, S., Nguyen, P.T.A., Yoshida, M. and Bae, J.H. (2005). Manipulation of a circular object without object information, IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alberta, Canada, pp. 1832–1838.
[17] Parra-Vega, V., Rodriguez-Angeles, A., Arimoto, S. and Hirzinger, G. (2001). High precision constrained grasping with cooperative adaptive handcontrol, Journal of Intelligent and Robotic Systems 32(3): 235–254.
[18] Salisbury, J. (1982). Kinematics and Force Analysis of Articulated Hands, Ph.D. thesis, Stanford University, Stanford, CA.
[19] Shapiro, A. (2001). Force closure set of linearly controlled grasps, Technical report, Technion Israel Institute of Technology, Haifa.
[20] Skrzypczyński, P. (2005). Uncertainty models of vision sensors in mobile robot positioning, International Journal of Applied Mathematics and Computer Science 15(1): 73–88.
[21] Song, S., Park, J. and Choi, Y. (2012). Dual-fingered stable grasping control for an optimal force angle, IEEE Transactions on Robotics 28(1): 256–262.
[22] Stramigioli, S. (2003). Modeling and IPC Control of Interactive Mechanical Systems—A Coordinate-free Approach, Lecture Notes in Control and Information Sciences, Vol. 266, Springer-Verlag, London.
[23] Wen, S. and Wu, T. (2012). Computation for maximum stable grasping in dynamic force distribution, Journal of Intelligent Robot Systems 68: 225–243.
[24] Wimboeck, T., Ott, C. and Hirzinger, G. (2006). Passivity-based object-level impedance control for a multifingered hand, IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 4621–4627.