Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_2_a3, author = {Klau\v{c}o, M. and Bla\v{z}ek, S. and Kvasnica, M.}, title = {An optimal path planning problem for heterogeneous multi-vehicle systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {297--308}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a3/} }
TY - JOUR AU - Klaučo, M. AU - Blažek, S. AU - Kvasnica, M. TI - An optimal path planning problem for heterogeneous multi-vehicle systems JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 297 EP - 308 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a3/ LA - en ID - IJAMCS_2016_26_2_a3 ER -
%0 Journal Article %A Klaučo, M. %A Blažek, S. %A Kvasnica, M. %T An optimal path planning problem for heterogeneous multi-vehicle systems %J International Journal of Applied Mathematics and Computer Science %D 2016 %P 297-308 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a3/ %G en %F IJAMCS_2016_26_2_a3
Klaučo, M.; Blažek, S.; Kvasnica, M. An optimal path planning problem for heterogeneous multi-vehicle systems. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 2, pp. 297-308. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_2_a3/
[1] Applegate, D. (2006). The Traveling Salesman Problem: A Computational Study, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ.
[2] Boyd, S. and Vandenberghe, L. (2009). Convex Optimization, 7th Edn., Cambridge University Press, New York, NY.
[3] Fagerholt, K. (1999). Optimal fleet design in a ship routing problem, International Transactions in Operational Research 6(5): 453–464.
[4] Garone, E., Determe, J.-F. and Naldi, R. (2012). A travelling salesman problem for a class of heterogeneous multi-vehicle systems, 2012 IEEE 51st Annual Conference on Decision and Control (CDC), Maui, HI, USA, pp. 1166–1171.
[5] Gurobi Optimization (2013). Gurobi optimizer reference manual, http://www.gurobi.com.
[6] Hoff, A., Andersson, H., Christiansen, M., Hasle, G. and Lkketangen, A. (2010). Industrial aspects and literature survey: Fleet composition and routing, Computers Operations Research 37(12): 2041–2061.
[7] ILOG (2007). 11.0 users manual, ILOG CPLEX Division, Incline Village, NV.
[8] Kerrigan, E. and Maciejowski, J. (2000). Soft constraints and exact penalty functions in model predictive control, Control 2000 Conference, Cambridge, UK.
[9] Klaučo, M., Blažek, S., Kvasnica, M. and Fikar, M. (2014). Mixed-integer SOCP formulation of the path planning problem for heterogeneous multi-vehicle systems, European Control Conference 2014, Strasbourg, France, pp. 1474–1479.
[10] Kvasnica, M. (2008). Efficient Software Tools for Control and Analysis of Hybrid Systems, Ph.D. thesis, ETH Zurich, Zurich.
[11] Löfberg, J. (2004). YALMIP, http://users.isy.liu.se/johanl/yalmip/.
[12] Mathew, N., Smith, S. and Waslander, S. (2014). Optimal path planning in cooperative heterogeneous multi-robot delivery systems, 11th International Workshop on the Algorithmic Foundations of Robotics, Istanbul, Turkey.
[13] Miller, C.E., Tucker, A.W. and Zemlin, R.A. (1960). Integer programming formulation of traveling salesman problems, Journal of the ACM 7(4): 326–329.
[14] Tung, D.V. and Pinnoi, A. (2000). Vehicle routingscheduling for waste collection in Hanoi, European Journal of Operational Research 125(3): 449–468.
[15] Williams, H. (1993). Model Building in Mathematical Programming, 3rd Edn., John Wiley Sons, Hoboken, NJ.