Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_1_a8, author = {Duan, R. and Li, J. and Zhang, Y. and Yang, Y. and Chen, G.}, title = {Stability analysis and {H\protect\textsubscript{\ensuremath{\infty}}} control of discrete {T{\textendash}S} fuzzy hyperbolic systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {133--145}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_1_a8/} }
TY - JOUR AU - Duan, R. AU - Li, J. AU - Zhang, Y. AU - Yang, Y. AU - Chen, G. TI - Stability analysis and H∞ control of discrete T–S fuzzy hyperbolic systems JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 133 EP - 145 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_1_a8/ LA - en ID - IJAMCS_2016_26_1_a8 ER -
%0 Journal Article %A Duan, R. %A Li, J. %A Zhang, Y. %A Yang, Y. %A Chen, G. %T Stability analysis and H∞ control of discrete T–S fuzzy hyperbolic systems %J International Journal of Applied Mathematics and Computer Science %D 2016 %P 133-145 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_1_a8/ %G en %F IJAMCS_2016_26_1_a8
Duan, R.; Li, J.; Zhang, Y.; Yang, Y.; Chen, G. Stability analysis and H∞ control of discrete T–S fuzzy hyperbolic systems. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 1, pp. 133-145. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_1_a8/
[1] Bemporad, A., Borrelli, F. and Morari, M. (2003). Min-max control of constrained uncertain discrete-time linear system, IEEE Transactions on Automatic Control 48(9): 1600–1606.
[2] Cao, S.G., Rees, N.W., Feng, G. and Liu,W. (2000). H∞ control of nonlinear discrete-time systems based on dynamical fuzzy models, International Journal of System Science 31(31): 229–241.
[3] Cao, Y.Y. and Frank, P.M. (2000). Robust H∞ disturbance attenuation for a class of uncertain discrete-time fuzzy systems, IEEE Transactions on Fuzzy Systems 8(4): 406–415.
[4] Chen, B. and Liu, X.P. (2005). Delay-dependent robust H∞ control for TCS fuzzy systems with time delay, IEEE Transactions on Fuzzy Systems 13(4): 544–556.
[5] Chen, B.-S., Tseng, C.-S. and Uang, H.-J. (2000). Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: An LMI approach, IEEE Transactions on Fuzzy Systems 8(3): 249–265.
[6] Chen, M.L. and Li, J.M. (2012). Modeling and control of T–S fuzzy hyperbolic model for a class of nonlinear systems, International Conference on Modelling, Identification and Control, Wuhan, China, pp. 57–62.
[7] Chen, M.L. and Li, J.M. (2015). Non-fragile guaranteed cost control for Takagi–Sugeno fuzzy hyperbolic systems, International Journal of System Science 46(9): 1614-1627.
[8] Datta, R., Bittermann, M.S., Deb, K. and Ciftcioglu, O. (2012). Probabilistic constraint handling in the framework of joint evolutionary-classical optimization with engineering application, IEEE Congress on Evolutionary Computation, Brisbane, Australia, pp. 1–8.
[9] Du, D.S. (2012). Reliable H∞ control for Takagi–Sugeno fuzzy systems with intermittent measurements, Nonlinear Analysis: Hybrid Systems 6(4): 930-941.
[10] Elliott, D.L. (1999). Bilinear systems, Encyclopedia of Electrical Engineering, Wiley, New York, NY.
[11] Feng, G. (2006). A survey on analysis and design of model-based fuzzy control systems, IEEE Transactions on Fuzzy Systems 14(5): 676-697.
[12] Guan, X. and Chen, C. (2004). Delay-dependent guaranteed cost control for T–S fuzzy system with time delays, IEEE Transactions on Fuzzy Systems 12(2): 236-249.
[13] Hsiao, M.Y., Liu, C.H., Tsai, S.H., Chen, P.S. and Chen, T.T. (2010). A Takagi–Sugeno fuzzy-model-based modeling method, IEEE International Conference on Fuzzy Systems, Barcelona, Spain, pp. 1–6.
[14] Jadbabaie, A., Jamshidi, M. and Titli, A. (1998). Guaranteed-cost design of continuous-time Takagi–Sugeno fuzzy controllers via linear matrix inequalities, IEEE World Congress on Computational Intelligence, Anchorage, AK, USA, Vol. 1, pp. 268–273.
[15] Kim, S.H., Lee, C.H. and Park, P.G. (2008). Relaxed delay-dependent stabilization conditions for discrete-time fuzzy systems with time delays, IEEE 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, pp. 999–1004.
[16] Li, J.M., Li, J., and Du, C.X. (2009). Linear Control System Theory and Methods, Xidian University Press, Xian, pp. 10–13.
[17] Li, J.R., Li, J.M. and Xia, Z.L. (2011). Delay-dependent generalized H2 control for discrete T–S fuzzy large-scale stochastic systems with mixed delays, International Journal of Applied Mathematics and Computer Science 21(4): 583–603, DOI: 10.2478/v10006-011-0046-6.
[18] Li, J.R., Li, J.M. and Xia, Z.L. (2013a). Observer-based fuzzy control design for discrete-time T-S fuzzy bilinear systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 21(3): 435–454.
[19] Li, J.R., Li, J.M. and Xia, Z.L. (2013b). Delay-dependent generalized H2 fuzzy static-output-feedback control for discrete T–S fuzzy bilinear stochastic systems with mixed delays, Journal of Intelligent and Fuzzy Systems Applications in Engineering and Technology 25(4): 863–880.
[20] Li, J.M. and Zhang, G. (2012). Non-fragile guaranteed cost control of T–S fuzzy time-varying state and control delays systems with local bilinear models, IEEE Transactions on Systems, Man and Cybernetics 9(2): 43–62.
[21] Li, T.H.S. and Tsai, S.H. (2007). T–S fuzzy bilinear model and fuzzy controller design for a class of nonlinear systems, IEEE Transactions on Fuzzy Systems 15(3): 494–506.
[22] Li, T.H.S. and Tsai, S.H. (2008). Robust H∞ fuzzy control for a class of uncertain discrete fuzzy bilinear systems, IEEE Transactions on Systems, Man and Cybernetics B: Cybernetics 38(2): 510–527.
[23] Li, T.H.S., Tsai, S.H., Lee, J.Z., Hsiao, M.Y. and Chao, C.H. (2008). Robust H∞ fuzzy control for a class of uncertain discrete fuzzy bilinear systems, IEEE Transactions on Systems, Man and Cybernetics B: Cybernetics 38(2): 510–527.
[24] Margaliot, M. and Langholz, G. (2003). A new approach to fuzzy modeling and control of discrete-time systems, IEEE Transactions on Fuzzy Systems 11(4): 486–494.
[25] Mohler, R.R. (1973). Bilinear Control Processes, Academic Press, New York, NY.
[26] Park, Y., Tahk, M.J. and Bang, H. (2004). Design and analysis of optimal controller for fuzzy systems with input constraint IEEE Transactions on Fuzzy System 12(6): 766–779.
[27] Qi, R.Y., Tao, G., Jiang, B. and Tan, C. (2012). Adaptive control schemes for discrete-time T–S fuzzy systems with unknown parameters and actuator failures, IEEE Transactions on Fuzzy Systems 20(3): 471–486.
[28] Qiu, J.B., Feng G. and Yang J. (2009). A new design of delay-dependent robust H∞ filtering for discrete-time T–S fuzzy systems with time-varying delay, IEEE Transactions on Fuzzy Systems 17(5): 1044-1058.
[29] Qiu, J.B., Feng G. and Gao H.J. (2010). Fuzzy-model-based piecewise H∞ static-output-feedback controller design for networked nonlinear systems, IEEE Transactions on Fuzzy Systems 18(5): 919-934.
[30] Siavash, F.D. and Alireza, F. (2014). Non-monotonic Lyapunov functions for stability analysis and stabilization of discrete time Takagi–Sugeno fuzzy systems, International Journal of Innovative Computing, Information and Control 10(4): 1567–1586.
[31] Su, X.J., Shi P.G., Wu L.G. and Song Y.-D. (2013). A novel control design on discrete-time Takagi–Sugeno fuzzy systems with time-varying delays, IEEE Transactions on Fuzzy Systems 21(4): 655–671.
[32] Su, X. J., Shi P.,Wu L. and Basin M.V. (2014). Reliable filtering with strict dissipativity for T–S fuzzy time-delay systems, IEEE Transactions on Cybernetics 44(12): 2470–2483, DOI: 10.1109/TCYB.2014.2308983.
[33] Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man and Cybernetics 15(1): 116–132.
[34] Tanaka, K. and Sugeno, M. (1992). Stability analysis and design of fuzzy control systems, Fuzzy Sets and Systems 45(2): 135–156.
[35] Tanaka, K. and Wang, H.O. (2001). Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, Wiley, New York, NY.
[36] Tong, S.C., He, X.L. and Zhang, H.C. (2009). A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control, IEEE Transactions on Fuzzy Systems 17(5): 1059–1069.
[37] Tong, S.C., Huo, B.Y. and Li, Y.M. (2014). Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures, IEEE Transactions on Fuzzy Systems 22(1): 1–15.
[38] Tong, S.C., Liu, C.L. and Li, Y.M. (2010). Fuzzy-adaptive decentralized output-feedback control for large-scale nonlinear systems with dynamical uncertainties, IEEE Transactions on Fuzzy Systems 18(5): 845–861.
[39] Tong, S.C. and Li, Y.M. (2012). Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones, IEEE Transactions on Fuzzy Systems 20(1): 168–180.
[40] Tong, S., Yang, G. and Zhang, W. (2011). Observer-based fault-tolerant control against sensor failures for fuzzy systems with time delays, International Journal of Applied Mathematics and Computer Science 21(4): 617–627, DOI: 10.2478/v10006-011-0048-4.
[41] Wang, J. (2014). Adaptive fuzzy control of direct-current motor dead-zone systems, International Journal of Innovative Computing, Information and Control 10(4): 1391–1399.
[42] Yan, H.C., Zhang, H., Shi, H.B. and Meng, M.Q.-H. (2010). H∞ fuzzy filtering for discrete-time fuzzy stochastic systems with time-varying delay, IEEE 29th Chinese Control Conference, Beijing, China, pp. 59993–59998.
[43] Zhang, G. and Li, J.M. (2010). Non-fragile guaranteed cost control of discrete-time fuzzy bilinear system, Journal of Systems Engineering and Electronics 21(4): 629–634.
[44] Zhang, H.G. (2009). Fuzzy Hyperbolic Model: Modeling Control and Applications, Science Press, Beijing, pp. 121–131.
[45] Zhang, H.G. and Quan, Y.B. (2001). Modeling, identification and control of a class of nonlinear system, IEEE Transactions on Fuzzy Systems 9(2): 349-354.
[46] Zhang, H., Shi, Y., and Mehr, A.S. (2012). On filtering for discrete-time Takagi–Sugeno fuzzy systems, IEEE Transactions on Fuzzy Systems 20(2): 396–401.
[47] Zhao, Y., and Gao, H.J. (2012). Fuzzy-model-based control of an overhead crane with input delay and actuator saturation Transactions on Fuzzy Systems 20(1): 181–186.
[48] Zhao, T., Xiao, J., Li, Y. and Li, Y.X. (2013). A fuzzy Lyapunov function approach to stabilization of interval type-2 T–S fuzzy systems, IEEE 25th Chinese Control and Decision Conference, Xian, China, pp. 2234-2238.