Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_1_a2, author = {N\'emeth, B. and G\'asp\'ar, P. and P\'eni, T.}, title = {Nonlinear analysis of vehicle control actuations based on controlled invariant sets}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {31--43}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_1_a2/} }
TY - JOUR AU - Németh, B. AU - Gáspár, P. AU - Péni, T. TI - Nonlinear analysis of vehicle control actuations based on controlled invariant sets JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 31 EP - 43 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_1_a2/ LA - en ID - IJAMCS_2016_26_1_a2 ER -
%0 Journal Article %A Németh, B. %A Gáspár, P. %A Péni, T. %T Nonlinear analysis of vehicle control actuations based on controlled invariant sets %J International Journal of Applied Mathematics and Computer Science %D 2016 %P 31-43 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_1_a2/ %G en %F IJAMCS_2016_26_1_a2
Németh, B.; Gáspár, P.; Péni, T. Nonlinear analysis of vehicle control actuations based on controlled invariant sets. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 1, pp. 31-43. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_1_a2/
[1] Beal, C.E. and Gerdes, J.C. (2013). Model predictive control for vehicle stabilization at the limits of handling, IEEE Transactions on Control Systems Technology 21(4): 1258–1269.
[2] Cairano, S., Tseng, H.E., Bernardini, D. and Bemporad, A. (2013). Vehicle yaw stability control by coordinated active front steering and differential braking in the tire sideslip angles domain, IEEE Transactions on Control Systems Technology 21(4): 1236–1248.
[3] Carvalho, A., Palmieri, G., Tseng, H., Glielmo, L. and Borrelli, F. (2013). Robust vehicle stability control with an uncertain driver model, European Control Conference, Zurich, Switzerland, pp. 440–445.
[4] deWit, C.C., Olsson, H., Astrom, K.J. and Lischinsky, P. (1995). A new model for control of systems with friction, IEEE Transactions on Automatic Control 40(3): 419–425.
[5] Grip, H., Imsland, L., Johansen, T., Fossen, T., Kalkkuhl, J. and Suissa, A. (2008). Nonlinear vehicle side-slip estimation with friction adaptation, Automatica 44(11): 611–622.
[6] Gustafsson, F. (1997). Slip-based tire-road friction estimation, Automatica 33(6): 1087–1099.
[7] Jarvis-Wloszek, Z. (2003). Lyapunov Based Analysis and Controller Synthesis for Polynomial Systems using Sumof-Squares Optimization, Ph.D. Thesis, University of California, Berkeley, CA.
[8] Jarvis-Wloszek, Z., Feeley, R., Tan, W., Sun, K. and Packard, A. (2003). Some controls applications of sum of squares programming, 42nd IEEE Conference on Decision and Control, Maui, HI, USA, Vol. 5, pp. 4676–4681.
[9] Jianyong, W., Houjun, T., Shaoyuan, L. and Wan, F. (2007). Improvement of vehicle handling and stability by integrated control of four wheel steering and direct yaw moment, 26th Chinese Control Conference, Zhangjiajie, China, pp. 730–735.
[10] Khelassi, A., Theilliol, D. and Weber, P. (2011). Reconfigurability analysis for reliable fault-tolerant control design, International Journal of Applied Mathematics and Computer Science 21(3): 431–439, DOI: 10.2478/v10006-011-0032-z.
[11] Kiencke, U. and Nielsen, L. (2000). Automotive Control Systems for Engine, Driveline and Vehicle, Springer, New York, NY.
[12] Kim, D., Peng, H., Bai, S. and Maguire, J. (2007). Control of integrated powertrain with electronic throttle and automatic transmission, IEEE Transactions on Control Systems Technology 15(3): 474–482.
[13] Korda, M., Henrion, D. and Jones, C.N. (2013). Convex computation of the maximum controlled invariant set for discrete-time polynomial control systems, Conference on Decision and Control, Firenze, Italy, pp. 7107–7112.
[14] Kritayakirana, K. and Gerdes, J. (2012a). Using the centre of percussion to design a steering controller for an autonomous race car, Vehicle System Dynamics 50(Supp1): 33–51.
[15] Kritayakirana, K. and Gerdes, J.C. (2012b). Autonomous vehicle control at the limits of handling, International Journal of Vehicle Autonomous Systems 10(4): 271–296.
[16] Lasserre, J.B. (2007). Sum of squares approximation of nonnegative polynomials, SIAM Journal on Optimization 49(4): 651–669.
[17] Löfberg, J. (2009). Pre- and post-processing sum-of-squares programs in practice, IEEE Trans. on Automatic Control 54(5): 1007–1011.
[18] Lu, J. and Filev, D. (2009). Multi-loop interactive control motivated by driver-in-the-loop vehicle dynamics controls: The framework, Conference on Decision and Control, Shanghai, China, pp. 3569–3574.
[19] Mastinu, G., Babbel, E., Lugner, P., Margolis, D., Mittermayr P. and Richter, B. (1994). Integrated controls of lateral vehicle dynamics, Vehicle System Dynamics 23(Supp1): 358–377.
[20] Németh, B. and Gáspár, P. (2011). Design of actuator interventions in the trajectory tracking for road vehicles, Conference on Decision and Control, Orlando, FL, USA, pp. 7434–7439.
[21] Németh, B. and Gáspár, P. (2013). Analysis of vehicle actuators based on reachable sets, European Control Conference, Zurich, Switzerland, pp. 3137–3142.
[22] Ono, E., Hattori, Y., Muragishi, Y. and Koibuchi, K. (2006). Vehicle dynamics integrated control for four-wheel-distributed steering and four-wheel-distributed traction/braking systems, Vehicle System Dynamics 44(2): 139–151.
[23] Pacejka, H.B. (2004). Tyre and Vehicle Dynamics, Elsevier Butterworth-Heinemann, Oxford.
[24] Palmieri, G., Barc, M., Glielmo, L., Tseng, E.H. and Borrelli, F. (2011). Robust vehicle lateral stabilization via set-based methods for uncertain piecewise affine systems: Experimental results, 50th IEEE Conference on Decision and Control, Orlando, FL, USA, pp. 3252–3257.
[25] Palmieri, G., Baric, M., Glielmo, L. and Borrelli, F. (2012). Robust vehicle lateral stabilisation via set-based methods for uncertain piecewise affine systems, Vehicle System Dynamics 50(6): 861–882.
[26] Papachristodoulou, A. and Prajna, S. (2005). Analysis of non-polynomial systems using the sum of squares decomposition, in D. Henrion and A. Garulli (Eds.), Positive Polynomials in Control, Springer-Verlag, Berlin/Heidelberg, pp. 23–43.
[27] Parrilo, P. (2003). Semidefinite programming relaxations for semialgebraic problems, Mathematical Programming B 96(2): 293–320.
[28] Poussot-Vassal, C., Sename, O., Dugard, L., Gáspár, P., Szabó, Z. and Bokor, J. (2008). A new semi-active suspension control strategy through LPV technique, Control Engineering Practice 16(12): 1519–1534.
[29] Prajna, S., Papachristodoulou, A. and Wu., F. (2004). Nonlinear control synthesis by sum of squares optimization: A Lyapunov-based approach, 5th IEEE Asian Control Conference, Melbourne, Australia, Vol. 1, pp. 157–165.
[30] Sadri, S. and Wu, C. (2013). Stability analysis of a nonlinear vehicle model in plane motion using the concept of Lyapunov exponents, Vehicle System Dynamics 51(6): 906–924.
[31] Scherer, C.W. and Hol, C.W.J. (2006). Matrix sum-of-squares relaxations for robust semi-definite programs, Mathematical Programming 107(1): 189–211.
[32] Sontag, E.D. (1989). A “universal” construction of Artstein’s theorem on nonlinear stabilization, Systems Control Letters 13(2): 117–123.
[33] Summers, E., Chakraborty, A., Tan, W., Topcu, U., Seiler, P., Balas, G. and Packard, A. (2003). Quantitative local l2-gain and reachability analysis for nonlinear systems, International Journal of Robust and Nonlinear Control 23(10): 1115–1135.
[34] Tan, W. and Packard, A. (2008). Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of-squares programming, IEEE Transactions on Automatic Control 53(2): 565–571.
[35] Topcu, U. and Packard, A. (2009). Local robust performance analysis for nonlinear dynamical systems, American Control Conference, St. Louis, MO, USA, pp. 784–789.
[36] Yetendje, A., Seron, M.M. and De Don´a, J.D. (2012). Robust multisensor fault tolerant model-following MPC design for constrained systems, International Journal of Applied Mathematics and Computer Science 22(1): 211–223, DOI: 10.2478/v10006-012-0016-7.
[37] Yu, F., Li, D. and Crolla, D. (2008). Integrated vehicle dynamics control: State-of-the art review, IEEE Vehicle Power and Propulsion Conference, Harbin, China, pp. 1–6.
[38] Zhang, S., Zhang, T. and Zhou, S. (2009). Vehicle stability control strategy based on active torque distribution and differential braking, Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, Hunan, China, pp. 922–925.