Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2016_26_1_a10, author = {Brdy\'s, M. A. and Brdy\'s, M. T. and Maciejewski, S. M.}, title = {Adaptive predictions of the euro/z{\l}oty currency exchange rate using state space wavelet networks and forecast combinations}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {161--173}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_1_a10/} }
TY - JOUR AU - Brdyś, M. A. AU - Brdyś, M. T. AU - Maciejewski, S. M. TI - Adaptive predictions of the euro/złoty currency exchange rate using state space wavelet networks and forecast combinations JO - International Journal of Applied Mathematics and Computer Science PY - 2016 SP - 161 EP - 173 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_1_a10/ LA - en ID - IJAMCS_2016_26_1_a10 ER -
%0 Journal Article %A Brdyś, M. A. %A Brdyś, M. T. %A Maciejewski, S. M. %T Adaptive predictions of the euro/złoty currency exchange rate using state space wavelet networks and forecast combinations %J International Journal of Applied Mathematics and Computer Science %D 2016 %P 161-173 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_1_a10/ %G en %F IJAMCS_2016_26_1_a10
Brdyś, M. A.; Brdyś, M. T.; Maciejewski, S. M. Adaptive predictions of the euro/złoty currency exchange rate using state space wavelet networks and forecast combinations. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) no. 1, pp. 161-173. http://geodesic.mathdoc.fr/item/IJAMCS_2016_26_1_a10/
[1] BIS (2013). Foreign Exchange Turnover in April 2013: Preliminary Global Results, Triennial Central Bank Survey, Bank of International Settlements, Basel.
[2] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics 31(3): 307–327.
[3] Borowa, A., Brdyś, M.A. and Mazur, K. (2007). Modelling of wastewater treatment plant for monitoring and control purposes by state-space wavelet networks, International Journal of Computers, Communications Control 2(2): 121–131.
[4] Brdyś, M.A., Borowa, A., Idźkowiak, P. and Brdyś, M.T. (2009). Adaptive predictions of stock exchange indices state space wavelet networks, International Journal of Applied Mathematics and Computer Science 19(2): 337–348, DOI: 10.2478/v10006-009-0029-z.
[5] CSO (2014). Foreign Trade in January–December 2013, Statistical Information and Elaborations, Central Statistical Office, Warsaw.
[6] Grossmann, A. and Morlet, J. (1984). Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM Journal on Mathematical Analysis 15(4): 723–736.
[7] Guidolin, M. and Timmermann, A. (2009). Forecasts of US short-term interest rates: A flexible forecast combination approach, Journal of Econometrics 150(2): 297–311.
[8] Hajek, B. (1988). Cooling schedules for optimal annealing, Mathematics of Operations Research 13(2): 311–329.
[9] Hyndman, R.J., Ahmed, R.A., Athanasopoulos, G. and Shang, H.L. (2011). Optimal combination forecasts for hierarchical time series, Computational Statistics and Data Analysis 55(9): 2579–2589.
[10] Jacobson, S.H., Hall, S.N., Mclay, L.A. and Orosz, J.E. (2005). Performance analysis of cyclical simulated annealing algorithms, Methodology and Computing in Applied Probability 7(2): 183–201.
[11] Karafyllidis, I. (1999). A simulator for single-electron tunnel devices and circuits based on simulated annealing, Superlattices and Microstructures 25(4): 567–572.
[12] Kawakami, K. (2013). Conditional forecast selection from many forecasts: An application to the yen/dollar exchange rate, Journal of the Japanese and International Economies 28(C): 1–18.
[13] Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983). Optimization by simulated annealing, Science 220(4598): 671–680.
[14] Kulawski, G.J. and Brdyś, M.A. (2000). Stable adaptive control with recurrent networks, Automatica 36(1): 5–22.
[15] Kuo, R.J., Chen, C.H. and Hwang, Y.C. (2001). An intelligent stock trading support system through integration of genetic algorithm based fuzzy neural network and artificial neural network, Fuzzy Sets and Systems 118(1): 21–45.
[16] Locatelli, M. (2000). Convergence and first hitting time of simulated annealing algorithms for continuous global optimization, Mathematical Methods of Operations Research 54(2): 171–199.
[17] McCracken, M.W. and Clark, T.E. (2009). Improving forecast accuracy by combining recursive and rolling forecasts, International Economic Review 50(2): 363–395.
[18] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953). Equations of state calculations by fast computing machines, Journal of Chemical Physics 21: 1087–1092.
[19] NBP (2013). Turnover in the Domestic Foreign Exchange and OTC Derivatives Markets in April 2013, National Bank of Poland, Warsaw.
[20] Pesaran, M.H. and Pick, A. (2011). Forecast combination across estimation windows, Journal of Business Economics and Statistics 29(2): 307–318.
[21] Qi, R. and Brdyś, M.A. (2008). Stable indirect adaptive control based on discrete-time T–S fuzzy model, Fuzzy Sets and Systems 159(8): 900–925.
[22] Qi, R. and Brdyś, M.A. (2009). Indirect adaptive control based on a self-structuring fuzzy system for nonlinear modelling and control, International Journal of Applied Mathematics and Computer Science 19(4): 619–630, DOI: 10.2478/v10006-009-0049-8.
[23] Rapach, D.E., Strauss, J.K. and Zhou, G. (2010). Out-of-sample equity premium prediction: Combination forecasts and links to the real economy, The Review of Financial Studies 23(2): 821–862.
[24] Stock, J.H. and Watson, M.W. (2004). Combination forecasts of output growth in a seven-country data set, Journal of Forecasting 23(6): 405–430.
[25] Tian, J. and Anderson, H.M. (2014). Forecast combinations under structural break uncertainty, International Journal of Forecasting 30(1): 161–175.
[26] Timmermann, A. (2006). Forecast combinations, in G. Elliott et al. (Eds.), Handbook of Economic Forecasting, Elsevier, Amsterdam.
[27] Tsang, P.M., Kwok, P., Choy, S.O., Kwan, R., Ng, S.C., Mak, J., Tsang, J., Koong, K. and Wong, T. (2007). Design and implementation of NN5 for Hong Kong stock price forecasting, Engineering Applications of Artificial Intelligence 20(4): 453–461.
[28] Zammarreno, J.M. and Pastora, V. (1998). State space neural network: Properties and applications, Neural Networks 11(6): 1099–1112.
[29] Zhang, G., Patuwo, B.E. and Hu, M.Y. (1998). Forecasting with artificial neural networks: The state of the art, International Journal of Forecasting 14(1): 35–62.
[30] Zhang, Q. (1992). Wavelet network: The radial structure and an efficient initialization procedure, Technical Report LiTHISY-I-1423, Linkoping University, Linkoping.
[31] Zhang, Q. and Beneveniste, A. (1992). Wavelet networks, IEEE Transactions on Neural Networks 3(6): 889–898.