Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_4_a9, author = {{\L}awry\'nczuk, M.}, title = {Nonlinear state-space predictive control with on-line linearisation and state estimation}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {833--847}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a9/} }
TY - JOUR AU - Ławryńczuk, M. TI - Nonlinear state-space predictive control with on-line linearisation and state estimation JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 833 EP - 847 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a9/ LA - en ID - IJAMCS_2015_25_4_a9 ER -
%0 Journal Article %A Ławryńczuk, M. %T Nonlinear state-space predictive control with on-line linearisation and state estimation %J International Journal of Applied Mathematics and Computer Science %D 2015 %P 833-847 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a9/ %G en %F IJAMCS_2015_25_4_a9
Ławryńczuk, M. Nonlinear state-space predictive control with on-line linearisation and state estimation. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 4, pp. 833-847. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a9/
[1] Arahal, M., Berenguel, M. and Camacho, E. (1998). Neural identification applied to predictive control of a solar plant, Control Engineering Practice 6(3): 333–344.
[2] Bismor, D. (2015). Extension of LMS stability condition over a wide set of signals, International Journal of Adaptive Control and Signal Processing 29(5): 653–670, DOI: 10.1002/acs.2500.
[3] Camacho, E. and Bordons, C. (1999). Model Predictive Control, Springer, London.
[4] Colin, G., Chamaillard, Y., Bloch, G. and Corde, G. (2007). Neural control of fast nonlinear systems application to a turbocharged SI engine with VCT, IEEE Transactions on Neural Networks 18(4): 1101–1114.
[5] de Oliveira, N. and Biegler, L. (1995). An extension of Newton-type algorithms for nonlinear process control, Automatica 52(2): 281–286.
[6] Deng, J., Becerra, V.M. and Stobart, R. (2009). Input constraints handling in an MPC/feedback linearization scheme, International Journal of Applied Mathematics and Computer Science 19(2): 219–232, DOI: 10.2478/v10006-009-0018-2.
[7] Doyle, F., Ogunnaike, B. and Pearson, R. (1995). Nonlinear model-based control using second-order Volterra models, Automatica 31(5): 697–714.
[8] Ellis, M., Durand, H. and Christofides, P. (2014). A tutorial review of economic model predictive control methods, Journal of Process Control 24(8): 1156–1178.
[9] Gonzalez, A., Adam, E. and Marchetti, J. (2008). Conditions for offset elimination in state space receding horizon controllers: A tutorial analysis, Chemical Engineering and Processing 47(12): 2184–2194.
[10] Kuure-Kinsey, M., Cutright, R. and Bequette, B. (2006). Computationally efficient neural predictive control based on a feedforward architecture, Industrial and Engineering Chemistry Research 45(25): 8575–8582.
[11] Ławryńczuk, M. (2007). A family of model predictive control algorithms with artificial neural networks, International Journal of Applied Mathematics and Computer Science 17(2): 217–232, DOI: 10.2478/v10006-007-0020-5.
[12] Ławryńczuk, M. (2014). Computationally Efficient Model Predictive Control Algorithms: A Neural Network Approach, Studies in Systems, Decision and Control, Vol. 3, Springer, Heidelberg.
[13] Lee, J. and Ricker, N. (1994). Extended Kalman filter based nonlinear model predictive control, Industrial and Engineering Chemistry Research 33(6): 1530–1541.
[14] Maciejowski, J. (2002). Predictive Control with Constraints, Prentice Hall, Harlow.
[15] Maeder, U. and Morari, M. (2010). Offset-free reference tracking with model predictive control, Automatica 46(9): 1469–1476.
[16] Mayne, D. (2014). Model predictive control: Recent developments and future promise, Automatica 50(12): 2967–2986.
[17] Megías, D., Serrano, J. and Ghoumari, M.E. (1999). Extended linearised predictive control: Practical control algorithms for non-linear systems, Proceedings of the European Control Conference, ECC 1999, Karlsruhe, Germany, F883.
[18] Mu, J., Rees, D. and Liu, G. (2005). Advanced controller design for aircraft gas turbine engines, Journal of Process Control 13(8): 1001–1015.
[19] Muske, K. and Badgwell, T. (2002). Disturbance modeling for offset-free linear model predictive control, Journal of Process Control 12(5): 617–632.
[20] Pannocchia, G. and Bemporad, A. (2007). Combined design of disturbance model and observer for offset-free model predictive control, IEEE Transactions on Automatic Control 52(6): 1048–1053.
[21] Pannocchia, G. and Rawlings, J. (2003). Disturbance models for offset-free model predictive control, AIChE Journal 49(2): 426–437.
[22] Patan, K. and Korbicz, J. (2012). Nonlinear model predictive control of a boiler unit: A fault tolerant control study, International Journal of Applied Mathematics and Computer Science 22(1): 225–237, DOI: 10.2478/v10006-012-0017-6.
[23] Qin, S. and Badgwell, T. (2003). A survey of industrial model predictive control technology, Control Engineering Practice 11(7): 733–764.
[24] Rawlings, J. and Mayne, D. (2009). Model Predictive Control: Theory and Design, Nob Hill Publishing, Madison.
[25] Simon, D. (2006). Optimal State Estimation: Kalman, H∞ and Nonlinear Approaches, John Wiley Sons, Hoboken, NJ.
[26] Tatjewski, P. (2007). Advanced Control of Industrial Processes, Structures and Algorithms, Springer, London.
[27] Tatjewski, P. (2010). Supervisory predictive control and on-line set-point optimization, International Journal of Applied Mathematics and Computer Science 20(3): 483–495, DOI: 10.2478/v10006-010-0035-1.
[28] Tatjewski, P. (2014). Disturbance modeling and state estimation for offset-free predictive control with state-space models, International Journal of Applied Mathematics and Computer Science 24(2): 313–323, DOI: 10.2478/amcs-2014-0023.
[29] Tatjewski, P. and Ławryńczuk, M. (2006). Soft computing in model-based predictive control, International Journal of Applied Mathematics and Computer Science 16(1): 7–26.
[30] Wang, L. (2007). Model Predictive Control System Design and Implementation Using MATLAB, Springer, London.