Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_4_a3, author = {Mariano, P. and Correia, L.}, title = {The {Give} and {Take} game: {Analysis} of a resource sharing game}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {753--767}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a3/} }
TY - JOUR AU - Mariano, P. AU - Correia, L. TI - The Give and Take game: Analysis of a resource sharing game JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 753 EP - 767 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a3/ LA - en ID - IJAMCS_2015_25_4_a3 ER -
%0 Journal Article %A Mariano, P. %A Correia, L. %T The Give and Take game: Analysis of a resource sharing game %J International Journal of Applied Mathematics and Computer Science %D 2015 %P 753-767 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a3/ %G en %F IJAMCS_2015_25_4_a3
Mariano, P.; Correia, L. The Give and Take game: Analysis of a resource sharing game. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 4, pp. 753-767. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a3/
[1] Akiyama, E. and Kaneko, K. (2000). Dynamical systems game theory and dynamics of games, Physica D 147(3–4): 221–258.
[2] Anderlini, L. (1999). Communication, computability, and common interest games, Games and Economic Behavior 27(1): 1–37.
[3] Axelrod, R. (1984). The Evolution of Cooperation, Basic Books New York, New York, NY.
[4] Binmore, K. (1996). A note on backward induction, Games and Economic Behavior 17(1): 135–137.
[5] Blackwell, C. and McKee, M. (2003). Only for my own neighborhood? Preferences and voluntary provision of local and global public goods, Journal of Economic Behavior Organization 52(1): 115–131.
[6] Boyd, R., Gintis, H., Bowles, S. and Richerson, P.J. (2003). The evolution of altruistic punishment, Proceedings of the National Academy of Sciences 100(6): 3531–3535.
[7] Brembs, B. (1996). Chaos, cheating and cooperation: Potential solutions to the prisoner’s dilemma, Oikos 76(1): 14–24.
[8] Camerer, C. (2003). Behavioral Game Theory, Princeton University Press, Princeton, NJ.
[9] Cason, T.N. and Mui, V.-L. (1998). Social influence in the sequential dictator game, Journal of Mathematical Psychology 42(2–3): 248–265.
[10] Chen, X. and Deng, X. (2006). Settling the complexity of two-player Nash equilibrium, 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS’06, Berkeley, CA, USA, pp. 261–272.
[11] Dong, H. and Dai, Z. (2011). A multi intersections signal coordinate control method based on game theory, 2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, pp. 1232–1235.
[12] Doniec, A., Mandiau, R., Piechowiak, S. and Espié, S. (2008). A behavioral multi-agent model for road traffic simulation, Engineering Applications of Artificial Intelligence 21(8): 1443–1454.
[13] Fehr, E. and Gächter, S. (2002). Altruistic punishment in humans, Nature 415(6868): 137–140.
[14] Fehr, E. and Gintis, H. (2007). Human motivation and social cooperation: Experimental and analytical foundations, Annual Review of Sociology 33: 43–64.
[15] Fehr, E. and Leibbrandt, A. (2011). A field study on cooperativeness and impatience in the tragedy of the commons, Journal of Public Economics 95(9–10): 1144–1155.
[16] Gintis, H. (2000). Game Theory Evolving—A Problem-centered Introduction to Modeling Strategic Interaction, 1st Edn., Princeton University Press, Princeton, NJ.
[17] Helbing, D., Schönhof, M., Stark, H.-U. and Holyst, J.A. (2005). How individuals learn to take turns: Emergence of alternating cooperation in a congestion game and the prisoner’s dilemma, Advances in Complex Systems 8(1): 87–116.
[18] Hofbauer, J. and Sigmund, K. (1998). Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge.
[19] Jones, P.J.S. (2006). Collective action problems posed by no-take zones, Marine Policy 30(2): 143–156.
[20] Koller, D., Megiddo, N. and von Stengel, B. (1996). Efficient computation of equilibria for extensive two-person games, Games and Economic Behavior 14(2): 247–259, http://www.sciencedirect.com/science/article/pii/S0899825696900512.
[21] Lau, S.-H. and Mui, V.-L. (2012). Using turn taking to achieve intertemporal cooperation and symmetry in infinitely repeated 2×2 games, Theory and Decision 72(2): 167–188, DOI: 10.1007/s11238-011-9249-4.
[22] López-Pérez, R. (2008). Aversion to norm-breaking: A model, Games and Economic Behavior 64(1): 237–267.
[23] Mariano, P. and Correia, L. (2002a). The effect of agreements in a game with multiple strategies for cooperation, in R. Standish, M.A. Bedau and H.A. Abbass (Eds.), Artificial Life VIII: Proceedings of the Eighth International Conference on Artificial Life, MIT Press, Cambridge, MA, pp. 375–378.
[24] Mariano, P. and Correia, L. (2002b). A game to study coordination and cooperation, 5th Workshop on Deception, Fraud and Trust in Agent Societies, Bologna, Italy, pp. 101–112.
[25] Mariano, P. and Correia, L. (2003). A resource sharing model to study social behaviours, Progress in Artificial Intelligence—11th Portuguese Conference on Artificial Intelligence, EPIA 2003, Beja, Portugal, pp. 84–88.
[26] McCarter, M.W., Budescu, D.V. and Scheffran, J. (2011). The give-or-take-some dilemma: An empirical investigation of a hybrid social dilemma, Organizational Behavior and Human Decision Processes 116(1): 83–95.
[27] McKelvey, R.D. and Palfrey, T.R. (1992). An experimental study of the centipede game, Econometrica 60(4): 803–836.
[28] Nicolò, A. and Yu, Y. (2008). Strategic divide and choose, Games and Economic Behavior 64(1): 268–289.
[29] Nowak, M., Bonhoeffer, S. and May, R. (1994). Spatial games and the maintenance of cooperation, Proceedings of the National Academy of Sciences 91(11): 4877–4881.
[30] Ottone, S. (2008). Are people Samaritans or Avengers?, Economics Bulletin 3(10): 1–3.
[31] Papadimitriou, C.H. (1994). On the complexity of the parity argument and other inefficient proofs of existence, Journal of Computer and System Sciences 48(3): 498–532. http://www.sciencedirect.com/science/article/pii/S0022000005800637.
[32] Rosenthal, R.W. (1981). Games of perfect information, predatory pricing and the chain-store paradox, Journal of Economic Theory 25(1): 92–100, http://ideas.repec.org/a/eee/jetheo/v25y1981i1p92-100.html.
[33] Rowland, M. (2005). A framework for resolving the transboundary water allocation conflict conundrum, Ground Water 43(5): 700–705.
[34] Shapley, L.S. (1953). Stochastic games, Proceedings of the National Academy of Sciences 39(10): 1095–1100, http://www.pnas.org/content/39/10/1095.short.
[35] Shoham, Y. and Leyton-Brown, K. (2009). Multiagent Systems: Algorithmic, Game-theoretic and Logical Foundations, Cambridge University Press, Cambridge.
[36] Sigmund, K., Hauert, C. and Nowak, M.A. (2001). Reward and punishment in minigames, Proceedings of the National Academy of Sciences 98(19): 10757–10762.
[37] Sutter, M. and Strassmair, C. (2009). Communication, cooperation and collusion in team tournaments—an experimental study, Games and Economic Behavior 66(1): 506–525.
[38] van Dijk, F., Sonnemans, J. and van Winden, F. (2002). Social ties in a public good experiment, Journal of Public Economics 85(2): 275–299.
[39] Velez, M.A., Stranlund, J.K. and Murphy, J.J. (2009). What motivates common pool resource users? Experimental evidence from the field, Journal of Economic Behavior Organization 70(3): 485–497.
[40] Wallace, J.S., Acreman, M.C. and Sullivan, C.A. (2003). The sharing of water between society and ecosystems: from conflict to catchment-based co-management, Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 358(1440): 2011–2026.
[41] Ward, H. (1998). A game theoretic analysis of the politics of taking it in turns, British Journal of Political Science 28(2): 355–387.