Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_4_a18, author = {Kami\'nski, M.}, title = {Symbolic computing in probabilistic and stochastic analysis}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {961--973}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a18/} }
TY - JOUR AU - Kamiński, M. TI - Symbolic computing in probabilistic and stochastic analysis JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 961 EP - 973 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a18/ LA - en ID - IJAMCS_2015_25_4_a18 ER -
Kamiński, M. Symbolic computing in probabilistic and stochastic analysis. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 4, pp. 961-973. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a18/
[1] Binder, K. and Heermann, D. (1997). Monte Carlo Simulation in Statistical Physics, Springer Verlag, Berlin/Heidelberg.
[2] Bjorck, A. (1996). Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA.
[3] Brandt, S. (1999). Data Analysis Statistical and Computational Methods for Scientists and Engineers, Springer-Verlag, New York, NY.
[4] Burczyński, T. (1995). Boundary element method in stochastic shape design sensitivity analysis and identification of uncertain elastic solids, Engineering Analysis with Boundary Elements 15(2): 151–160.
[5] Chakraverty, S. (2014). Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems, IGI Global, Hershey.
[6] Falsone, G. (2005). An extension of the Kazakov relationship for non-Gaussian random variables and its use in the non-linear stochastic dynamics, Probabilistic Engineering Mechanics 20(1): 45–56.
[7] Feller, W. (1965). An Introduction to Probability Theory and Its Applications, Wiley, New York, NY.
[8] Grigoriu, M. (2000). Stochastic mechanics, International Journal of Solids and Structures 37(1–2): 228–248.
[9] Hurtado, J. and Barbat, A. (1998). Monte-Carlo techniques in computational stochastic mechanics, Archives of Computer Methods in Engineering 37(1): 3–30.
[10] Kamiński, M. (2005). Computational Mechanics of Composite Material, Springer-Verlag, London/New York, NY.
[11] Kamiński, M. (2013). The Stochastic Perturbation Method for Computational Mechanics, Wiley, Chichester.
[12] Kleiber, M. and Hien, T. (1992). The Stochastic Finite Element Method, Wiley, Chichester.
[13] Kwiatkowska, M., Norman, G., Sproston, J. and Wang, F. (2007). Symbolic model checking for probabilistic timed automata, Information and Computation 205(7): 1027–1077.
[14] Kwiatkowska, M., Parker, D., Zhang, Y. and Mehmood, R. (2004). Dual-processor parallelisation of symbolic probabilistic model checking, 12th International Symposium Modeling, Analysis and simulation of Computer and Telecommunication Systems MASCOTS’04, Volendaam, The Netherlands, pp. 123–130.
[15] López, N., Nunez, M. and Rodriguez, I. (2006). Specification, testing and implementation relations for symbolic-probabilistic system, Theoretical Computer Science 353(1–3): 228–248.
[16] Melchers, R. (2002). Structural Reliability Analysis and Prediction, Wiley, Chichester.
[17] Moller, B. and Beer, M. (2004). Fuzzy Randomness. Uncertainty in Civil Engineering and Computational Mechanics, Springer-Verlag, Berlin/Heidelberg.
[18] Nayfeh, A.H. (2000). Perturbation Method, Wiley-VCH Verlag GmbH, Weinheim.
[19] Peng, X., Geng, L., Liyan, W., Liu, G. and Lam, K. (1998). A stochastic finite element method for fatigue reliability analysis of gear teeth subjected to bending, Computational Mechanics 21(3): 253–261.
[20] Sakata, S., Ashida, F., Kojima, T. and Zako, M. (2008). Three-dimensional stochastic analysis using a perturbation-based homogenization method for elastic properties of composite material considering microscopic uncertainty, International Journal of Solids and Structures 45(3–4): 894–907.
[21] Schueller, G. (2007). On the treatment of uncertainties in structural mechanics and analysis, Computers and Structures 85(5–6): 235–243.
[22] Shachter, R.D., D’Ambrosio, B. and Del Favero, B. (1990). Symbolic probabilistic inference in belief networks, Proceedings of the 8th National Conference on Artificial Intelligence AAAI-90, Boston, MA, USA, pp. 126–131.
[23] Shannon, C. (1948). A mathematical theory of communication, The Bell System Technical Journal 27(4): 623–656.
[24] Sobczyk, K. and Spencer, B. (1992). Random Fatigue: From Data to Theory, Academic Press, Boston, MA.
[25] Spanos, P. and Ghanem, R. (1991). Stochastic Finite Elements. A Spectral Approach, Springer-Verlag, Berlin/Heidelberg.
[26] To, C. and Kiu, M. (1994). Random responses of discretized beams and plates by the stochastic central difference method with time co-ordinate transformation, Computers and Structures 53(3): 727–738.
[27] Van Noortwijk, J. and Frangopol, D. (2004). Two probabilistic life-cycle maintenance models for deteriorating civil infrastructures, Probabilistic Engineering Mechanics 19(4): 345–359.
[28] Wiggins, J. (1987). Option values under stochastic volatility. Theory and empirical evidence, Journal of Financial Economics 19(2): 351–372.
[29] Zienkiewicz, O. and Taylor, R. (2005). Finite Element Method for Solid and Structural Mechanics, Elsevier, Amsterdam.