Neural networks as a tool for georadar data processing
International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 4, pp. 955-960.

Voir la notice de l'article provenant de la source Library of Science

In this article a new neural network based method for automatic classification of ground penetrating radar (GPR) traces is proposed. The presented approach is based on a new representation of GPR signals by polynomials approximation. The coefficients of the polynomial (the feature vector) are neural network inputs for automatic classification of a special kind of geologic structure—a sinkhole. The analysis and results show that the classifier can effectively distinguish sinkholes from other geologic structures.
Keywords: neural network, artificial neural network, ground penetrating radar, geological structure, sinkhole
Mots-clés : sieć neuronowa, sztuczna sieć neuronowa, georadar, penetracja gruntu, budowa geologiczna, zapadlisko górnicze
@article{IJAMCS_2015_25_4_a17,
     author = {Szymczyk, P. and Tomecka-Sucho\'n, S. and Szymczyk, M.},
     title = {Neural networks as a tool for georadar data processing},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {955--960},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a17/}
}
TY  - JOUR
AU  - Szymczyk, P.
AU  - Tomecka-Suchoń, S.
AU  - Szymczyk, M.
TI  - Neural networks as a tool for georadar data processing
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2015
SP  - 955
EP  - 960
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a17/
LA  - en
ID  - IJAMCS_2015_25_4_a17
ER  - 
%0 Journal Article
%A Szymczyk, P.
%A Tomecka-Suchoń, S.
%A Szymczyk, M.
%T Neural networks as a tool for georadar data processing
%J International Journal of Applied Mathematics and Computer Science
%D 2015
%P 955-960
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a17/
%G en
%F IJAMCS_2015_25_4_a17
Szymczyk, P.; Tomecka-Suchoń, S.; Szymczyk, M. Neural networks as a tool for georadar data processing. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 4, pp. 955-960. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a17/

[1] Marcak, H., Gołębiowski, T. and Tomecka-Suchoń, S. (2008). Geotechnical analysis and 4D GPR measurements for the assessment of the risk of sinkholes occurring in a Polish mining area, Near Surface Geophysics 6(4) 233–243.

[2] McClymont, A.F., Green, A.G., Streich, R., Horstmeyer, H., Tronicke, J., Nobes, D.C., Pettinga, J., Campbell, J. and Langridge, R. (2008). Visualization of active faults using geometric attributes of 3D GPR data: An example from the alpine fault zone, New Zealand Geophysics 73(2): B11–B23.

[3] Miaskowski, A. and Cieszczyk, S. (2011). Two-step inverse problem algorithm for ground penetrating radar technique, Przegląd Elektrotechniczny 87(12b): 22–24.

[4] Tadeusiewicz, R. (2010). New trends in neurocybernetics, Computer Methods in Materials Science 10(1): 1–7.

[5] Tadeusiewicz, R. (2011). Introduction to intelligent systems, in B.M. Wilamowski and J.D. Irvis (Eds.), Fault Diagnosis. Models, Artificial Intelligence, Applications, CRC Press, Boca Raton, FL, Chapter 1, pp. 1-1–1-12.

[6] Tadeusiewicz, R., Chaki, R. and Chaki, N. (2014). Exploring Neural Networks with C#, CRC Press, Boca Raton, FL.

[7] Wei-Li, Huilin-Zhou and Xiaoting-Wan (2012). Generalized Hough transform and ANN for subsurface cylindrical object location and parameters inversion from GPR data, 14th International Conference on Ground Penetrating Radar GPR, Shanghai, China, pp. 281–285.