Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_4_a16, author = {Florea, C. and Vertan, C. and Florea, L.}, title = {High dynamic range imaging by perceptual logarithmic exposure merging}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {943--954}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a16/} }
TY - JOUR AU - Florea, C. AU - Vertan, C. AU - Florea, L. TI - High dynamic range imaging by perceptual logarithmic exposure merging JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 943 EP - 954 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a16/ LA - en ID - IJAMCS_2015_25_4_a16 ER -
%0 Journal Article %A Florea, C. %A Vertan, C. %A Florea, L. %T High dynamic range imaging by perceptual logarithmic exposure merging %J International Journal of Applied Mathematics and Computer Science %D 2015 %P 943-954 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a16/ %G en %F IJAMCS_2015_25_4_a16
Florea, C.; Vertan, C.; Florea, L. High dynamic range imaging by perceptual logarithmic exposure merging. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 4, pp. 943-954. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a16/
[1] Aydin, T., Mantiuk, R., Myszkowski, K. and Seidel, H. (2008). Dynamic range independent image quality assessment, ACM Transactions on Graphics 27(3): 1–10.
[2] Banterle, F., Artusi, A., Debattista, K. and Chalmers, A. (2011). Advanced High Dynamic Range Imaging: Theory and Practice, AK Peters (CRC Press), Natick, MA.
[3] Banterle, F., Artusi, A., Sikudova, E., Edward, T., Bashford-Rogers, W., Ledda, P., Bloj, M. and Chalmers, A. (2012). Dynamic range compression by differential zone mapping based on psychophysical experiments, ACM Symposium on Applied Perception, Los Angeles, CA, USA, pp. 39–46.
[4] Barten, P.G.J. (1999). Contrast Sensitivity of the Human Eye and Its Effects on Image Quality, SPIE,Washington, DC.
[5] Bruce, N.D. (2014). Expoblend: Information preserving exposure blending based on normalized log-domain entropy, Computers Graphics 39: 12–23.
[6] Čadík, M., Wimmer, M., Neumann, L. and Artusi, A. (2008). Evaluation of HDR tone mapping methods using essential perceptual attributes, Computers Graphics 32(3): 330–349.
[7] Debevec, P. and Malik, J. (1997). Recovering high dynamic range radiance maps from photographs, ACM SIGGRAPH, pp. 369–378.
[8] Deng, G., Cahill, L.W. and Tobin, G.R. (1995). A study of logarithmic image processing model and its application to image enhancement, IEEE Transactions on Image Processing 4(4): 506–512.
[9] Drago, F., Myszkowski, K., Annen, T. and Chiba, N. (2003). Adaptive logarithmic mapping for displaying high contrast scenes, Computer Graphics Forum 22(3): 419–426.
[10] Durand, F. and Dorsey, J. (2002). Fast bilateral filtering for the display of high-dynamic-range images, ACM Transactions on Graphics 21(3): 257–266.
[11] Fattal, R., Lischinski, D. and Werman, M. (2002). Gradient domain high dynamic range compression, ACM Transactions on Graphics 21(3): 249–256.
[12] Ferradans, S., Bertalmio, M., Provenzi, E. and Caselles, V. (2012). An analysis of visual adaptation and contrast perception for tone mapping, IEEE Transactions on Pattern Analysis and Machine Intelligence 33(10): 2002–2012.
[13] Florea, C. and Florea, L. (2013). Parametric logarithmic type image processing for contrast based auto-focus in extreme lighting conditions, International Journal of Applied Mathematics and Computer Science 23(3): 637–648, DOI: 10.2478/amcs-2013-0048.
[14] Gilchrist, A., Kossyfidis, C., Bonato, F., Agostini, T., Cataliotti, J., Li, X., Spehar, B., Annan, V. and Economou, E. (1999). An anchoring theory of lightness perception, Psychological Review 106(4): 795–834.
[15] Grossberg, M.D. and Nayar, S.K. (2004). Modeling the space of camera response functions, IEEE Transactions on Pattern Analysis and Machine Intelligence 26(10): 1272–1282.
[16] Jourlin, M. and Pinoli, J.C. (1987). Logarithmic image processing, Acta Stereologica 6: 651–656.
[17] Krawczyk, G., Myszkowski, K. and Seidel, H.-P. (2005). Lightness perception in tone reproduction for high dynamic range images, Computer Graphics Forum 24(3): 635–645.
[18] Macmillan, N. and Creelman, C. (Eds.) (2005). Detection Theory: A User’s Guide, Lawrence Erlbaum, London.
[19] Mann, S. and Mann, R. (2001). Quantigraphic imaging: Estimating the camera response and exposures from differently exposed images, IEEE Computer Vision and Pattern Recognition, Kauai, HI, USA, Vol. 1, pp. 842–849.
[20] Mann, S. and Picard, R. (1995). Being ‘undigital’ with digital cameras: Extending dynamic range by combining differently exposed pictures, Proceedings of IS 48th Annual Conference, San Jose, CA, USA, Vol. 1, pp. 422–428.
[21] Marković, D. and Jukić, D. (2013). On parameter estimation in the bass model by nonlinear least squares fitting the adoption curve, International Journal of Applied Mathematics and Computer Science 23(1): 145–155, DOI: 10.2478/amcs-2013-0012.
[22] Mertens, T., Kautz, J. and Reeth, F.V. (2007). Exposure fusion, Proceedings of Pacific Graphics, Maui, HI, USA, pp. 382–390.
[23] Meylan, L., Alleysson, D. and Susstrunk, S. (2007). Model of retinal local adaptation for the tone mapping of color filter array images, Journal of Optical Society of America A 24(9): 2807–2816.
[24] Naka, K.-I. and Rushton, W.A.H. (1966). S-potentials from luminosity units in the retina of fish (cyprinidae), The Journal of Physiology 185(3): 587–599.
[25] Navarro, L., Courbebaisse, G. and Deng, G. (2013). The symmetric logarithmic image processing model, Digital Signal Processing 23(5): 1337–1343.
[26] Panetta, K., Zhou, Y., Agaian, S. and Wharton, E. (2011). Parameterized logarithmic framework for image enhancement, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics 41(2): 460–472.
[27] Patrascu, V. and Buzuloiu, V. (2001). Color image enhancement in the framework of logarithmic models, 8th IEEE International Conference on Telecommunications, Bucharest, Romania, Vol. 1, pp. 199–204.
[28] Pece, F. and Kautz, J. (2010). Bitmap movement detection: HDR for dynamic scenes, Proceedings of the Conference on Visual Media Production, London, UK, pp. 1–8.
[29] Pinoli, J.C. and Debayle, J. (2007). Logarithmic adaptive neighborhood image processing (LANIP): Introduction, connections to human brightness perception, and application issues, EURASIP Journal on Advances in Signal Processing 1: 114–114, Paper no. 036105.
[30] Reinhard, E., Stark, M., Shirley, P. and Ferwerda, J. (2002). Photographic tone reproduction for digital images, ACM Transactions on Graphics 21(3): 267–276.
[31] Reinhard, E., Ward, G., Pattanaik, S. and Debevec, P. (2005). High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting, Morgan Kaufmann Publishers, San Francisco, CA.
[32] Robertson, M., Borman, S. and Stevenson, R. (1999). Dynamic range improvement through multiple exposures, International Conference on Image Processing, Kobe, Japan, pp. 159–163.
[33] Stevens, J. and Stevens, S. (1963). Brightness functions: Effects of adaptation, Journal of Optical Society of America A 53(3): 375–385.
[34] Stevens, S. (1961). To honor Fechner and repeal his law, Science 133(3446): 80–133.
[35] Tamburino, D., Alleysson, D., Meylan, L. and Strusstruk, S. (2008). Digital camera workflow for high dynamic range images using a model of retinal process, in D. Tamburrino, et al. (Eds.), IS/SPIE Electronic Imaging: Digital Photography IV, San Jose, CA, USA.
[36] Valeton, J. and van Norren, D. (1983). Light adaptation of primate cones: An analysis based on extracellular data, Vision Research 23(12): 1539–1547.
[37] Vertan, C., Oprea, A., Florea, C. and Florea, L. (2008). A pseudo-logarithmic framework for edge detection, Advanced Concepts for Intelligent Vision Systems, Juan-les-Pins, France, pp. 637–644.
[38] Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P. (2004). Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing 13(4): 600–612.
[39] Ward, G., Rushmeier, H. and Piatko, C. (1997). A visibility matching tone reproduction operator for high dynamic range scenes, IEEE Transactions on Visualization and Computer Graphics 3(4): 291–306.
[40] Yeganeh, H. and Wang, Z. (2013). Objective quality assessment of tone mapped images, IEEE Transactions on Image Processing 22(2): 657–667.
[41] Zhang, W. and Cham, W.-K. (2012). Gradient-directed multi-exposure composition, IEEE Transactios on Image Processing 21(4): 2318–2323.