Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_4_a11, author = {Cherif, I. and Fnaiech, F.}, title = {Nonlinear system identification with a real-coded genetic algorithm {(RCGA)}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {863--875}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a11/} }
TY - JOUR AU - Cherif, I. AU - Fnaiech, F. TI - Nonlinear system identification with a real-coded genetic algorithm (RCGA) JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 863 EP - 875 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a11/ LA - en ID - IJAMCS_2015_25_4_a11 ER -
%0 Journal Article %A Cherif, I. %A Fnaiech, F. %T Nonlinear system identification with a real-coded genetic algorithm (RCGA) %J International Journal of Applied Mathematics and Computer Science %D 2015 %P 863-875 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a11/ %G en %F IJAMCS_2015_25_4_a11
Cherif, I.; Fnaiech, F. Nonlinear system identification with a real-coded genetic algorithm (RCGA). International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 4, pp. 863-875. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a11/
[1] Annaswamy, A.S. and Yu, H. (1996). Adaptive neural networks: A new approach to parameter estimation, IEEE Transactions on Neural Networks 7(4): 907–918.
[2] Attar, P.J. and Dowell, E.H. (2005). A reduced order system ID approach to the modelling of nonlinear structural behavior in aeroelasticity, Journal of Fluids and Structures 21(5–7): 531–542.
[3] Cherif, I., Abid, S., Fnaiech, F. and Favier, G. (2004). Volterra kernels identification using higher order moments for different input signals, IEEE-ISCCSP, Hammamet, Tunisia, pp. 845–848.
[4] Cherif, I., Abid, S. and Fnaiech, F. (2005). Blind identification of quadratic systems under i.i.d. excitation using genetic algorithms, 8th International Symposium on Signal Processing and its Applications ISSPA’2005, Sydney, Australia, pp. 463–466.
[5] Cherif I., Abid S., and Fnaiech, F. (2007). Blind nonlinear system identification under Gaussian and/or i.i.d. excitation using genetic algorithms, IEEE International Conference on Signal Processing and Communication ICSPC 2007, Dubai, UAE, pp. 644–647.
[6] Cherif, I., Abid, S., Fnaiech, F. (2012). Nonlinear blind identification with three dimensional tensor analysis, Mathematical Problems in Engineering 2012, Article ID: 284815.
[7] Glentis, G.O.A., Koukoulas, P. and Kalouptsidis, N. (1999). Efficient algorithms for Volterra system identification, IEEE Transactions on Signal Processing 47(11): 3042–3057.
[8] Greblicki, W. (2001). Recursive identification of Wiener systems, International Journal of Applied Mathematics and Computer Science 11(4): 977–991.
[9] Herrera, F., Lozano, M., and Verdegay, J.L. (1998). Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis, Artificial Intelligence Review 12(4): 265–319.
[10] Koukoulas, P. and Kalouptsidis, N. (1996). On blind identification of quadratic systems, EUSIPCO’96, Trieste, Italy, pp. 1929–1932.
[11] Koukoulas, P. and Kalouptsidis, N. (1997). Third order system identification, International Conference on Acoustic Speech and Signal Processing: ICASSP’97, Munich, Germany, pp. 2405–2408.
[12] Koukoulas, P. and Kalouptsidis, N. (2000). Second order Volterra system identification, IEEE Transactions on Signal Processing 48(12): 3574–3577.
[13] Kalouptsidis, N. and Koukoulas, P. (2005). Blind identification of Volterra–Hammerstein systems, IEEE Transactions on Signal Processing 53(8): 2777–2787.
[14] Mathlouthi H., Abderrahim K., Msahli F. and Gerard F. (2009). Crosscumulants based approaches for the structure identification of Volterra models, International Journal of Automation and Computing 6(4): 420–430.
[15] Mendel J.M. (1991). Tutorial on higher order statistics (spectra) in signal processing and system theory: Theoretical results and some applications, Proceedings of the IEEE 79(3): 278–305.
[16] Ozertem, U. and Erdogmus, D. (2009). Second-order Volterra system identification with noisy input-output measurements, IEEE Signal Processing Letters 16(1): 18–21.
[17] Orjuela, R., Marx, B., Ragot, J. and Maquin D. (2013). Nonlinear system identification using heterogeneous multiple models, International Journal of Applied Mathematics and Computer Science 23(1): 103–115, DOI: 10.2478/amcs-2013-0009.
[18] Phan, M.Q., Longman, R.W., Lee, S.C. and Lee, J.-W. (2003). System identification from multiple-trial data corrupted by non-repeating periodic disturbances, International Journal of Applied Mathematics and Computer Science 13(2): 185–192.
[19] Stathaki, T. and Scohyers, A. (1997). A constrained optimisation approach to the blind estimation of Volterra kernels, IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-97, Munich, Germany, pp. 2373–2376.
[20] Stoica, P. and Soderstorm, T. (1982). Instrumental variable methods for identification of Hammerstein systems, International Journal of Control 35(3): 459–476.
[21] Tan, H.Z. and Chow, T.W.S. (2000). Blind identification of quadratic nonlinear models using neural networks with higher order cumulants, IEEE Transactions on Industrial Electronics 47(3): 687–696.
[22] Tseng, C.H. and Powers, E.J. (1995). Identification of cubic systems using higher order moments of i.i.d. signals, IEEE Transactions on Signal Processing 43(7): 1733–1735.
[23] Tsoulkas, V., Koukoulas, P. and Kalouptsidis, N. (2001). Identification of input-output bilinear system using cumulants, IEEE Transactions on Signal Processing 49(11): 2753–2761.
[24] Vasconcelos, J.A., Ramirez, J.A., Takahashi, R.H.C. and Saldanha, R.R. (2001). Improvement in genetic algorithms, IEEE Transactions on Magnetics 37(5): 3414–3417.
[25] Zhang, S. and Constantinides, A.G. (1992). Lagrange programming neural networks, IEEE Transactions on Circuits and Systems: Analog and Digital Signal Processing 39(7): 441–452.