Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_4_a10, author = {Seybold, L. and Witczak, M. and Majdzik, P. and Stetter, R.}, title = {Towards robust predictive fault-tolerant control for a battery assembly system}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {849--862}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a10/} }
TY - JOUR AU - Seybold, L. AU - Witczak, M. AU - Majdzik, P. AU - Stetter, R. TI - Towards robust predictive fault-tolerant control for a battery assembly system JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 849 EP - 862 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a10/ LA - en ID - IJAMCS_2015_25_4_a10 ER -
%0 Journal Article %A Seybold, L. %A Witczak, M. %A Majdzik, P. %A Stetter, R. %T Towards robust predictive fault-tolerant control for a battery assembly system %J International Journal of Applied Mathematics and Computer Science %D 2015 %P 849-862 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a10/ %G en %F IJAMCS_2015_25_4_a10
Seybold, L.; Witczak, M.; Majdzik, P.; Stetter, R. Towards robust predictive fault-tolerant control for a battery assembly system. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 4, pp. 849-862. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a10/
[1] Abrams, M., Doraswamy, N. and Mathur, A. (1992). Chitra: Visual analysis of parallel and distributed programs in the time, event, and frequency domains, IEEE Transactions on Parallel and Distributed Systems 3(6): 672–685.
[2] Baccelli, F., Cohen, G., Olsder, G.J. and Quadrat, J.-P. (1992). Synchronization and Linearity: An Algebra for Discrete Event Systems, John Wiley Sons Ltd., Chichester.
[3] Blanke, M., Schröder, J., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, Springer, Berlin.
[4] Butkovic, P. (2010). Max-linear Systems: Theory and Algorithms, Springer, London.
[5] Camacho, E.F. and Bordons, C.A. (1997). Model Predictive Control in the Process Industry, Springer-Verlag New York, Inc., New York, NY.
[6] Cechlárová, K. (2005). Eigenvectors of interval matrices over max-plus algebra, Discrete Applied Mathematics 150(1): 2–15.
[7] Chan, C. (2002). The state of the art of electric and hybrid vehicles, Proceedings of the IEEE 90(2): 247–275.
[8] Chen, W., Khan, A.Q., Abid, M. and Ding, S.X. (2011). Integrated design of observer-based fault detection for a class of uncertain non linear systems, International Journal of Applied Mathematics and Computer Science 21(3): 423–430, DOI: 10.2478/v10006-011-0031-0.
[9] De Schutter, B. and Van Den Boom, T. (2001). Model predictive control for max-plus-linear discrete event systems, Automatica 37(7): 1049–1056.
[10] Gunasekaran, A. (1999). Agile manufacturing: A framework for research and development, International Journal of Production Economics 62(1): 87–105.
[11] Hillion, H.P. and Proth, J.-M. (1989). Performance evaluation of job-shop systems using timed event-graphs, IEEE Transactions on Automatic Control 34(1): 3–9.
[12] Korbicz, J., Kościelny, J., Kowalczuk, Z. and Cholewa,W. (Eds.) (2004). Fault Diagnosis. Models, Artificial Intelligence, Applications, Springer-Verlag, Berlin.
[13] Li, H., Zhao, Q. and Yang, Z. (2007). Reliability modeling of fault tolerant control systems, International Journal of Applied Mathematics and Computer Science 17(4): 491–504, DOI: 10.2478/v10006-007-0041-0.
[14] Mrugalski, M. (2013). An unscented Kalman filter in designing dynamic GMDH neural networks for robust fault detection, International Journal of Applied Mathematics and Computer Science 23(1): 157–169, DOI: 10.2478/amcs-2013-0013.
[15] Nair, N.-K.C. and Garimella, N. (2010). Battery energy storage systems: Assessment for small-scale renewable energy integration, Energy and Buildings 42(11): 2124–2130.
[16] Polak, M.,Majdzik, P., Banaszak, Z. and Wójcik, R. (2004). The performance evaluation tool for automated prototyping of concurrent cyclic processes, Fundamenta Informaticae 60(1): 269–289.
[17] Prodan, I., Olaru, S., Stoica, C. and Niculescu, S.-I. (2013). Predictive control for trajectory tracking and decentralized navigation of multi-agent formations, International Journal of Applied Mathematics and Computer Science 23(1): 91–102, DOI: 10.2478/amcs-2013-0008.
[18] Rossiter, J. (2013). Model-based Predictive Control: A Practical Approach, CRC Press, Boca Raton, FL.
[19] Sahner, R., Trivedi, K. and Puliafito, A. (2012). Performance and Reliability Analysis of Computer Systems: An Example-based Approach using the SHARPE Software Package, Springer Publishing Company, Inc., New York, NY.
[20] Vincent, C. (1999). Lithium batteries, IEE Review 45(2): 65–68.
[21] Witczak, M. (2007). Modelling and Estimation Strategies for Fault Diagnosis of Non-linear Systems, Springer-Verlag, Berlin.
[22] Witczak, M. (2014). Fault Diagnosis and Fault-tolerant Control Strategies for Non-linear Systems, Lecture Notes in Electrical Engineering, Vol. 266, Springer International Publishing, Heidelberg.
[23] Yan, F., Dridi, M. and El Moudni, A. (2013). An autonomous vehicle sequencing problem at intersections: A genetic algorithm approach, International Journal of Applied Mathematics and Computer Science 23(1): 183–200, DOI: 10.2478/amcs-2013-0015.
[24] Zhang, Y. and Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant control systems, Annual Reviews in Control 32(2): 229–252.