Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_4_a1, author = {Bossard, A. and Kaneko, K.}, title = {Torus-connected cycles: {A} simple and scalable topology for interconnection networks}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {723--735}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a1/} }
TY - JOUR AU - Bossard, A. AU - Kaneko, K. TI - Torus-connected cycles: A simple and scalable topology for interconnection networks JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 723 EP - 735 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a1/ LA - en ID - IJAMCS_2015_25_4_a1 ER -
%0 Journal Article %A Bossard, A. %A Kaneko, K. %T Torus-connected cycles: A simple and scalable topology for interconnection networks %J International Journal of Applied Mathematics and Computer Science %D 2015 %P 723-735 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a1/ %G en %F IJAMCS_2015_25_4_a1
Bossard, A.; Kaneko, K. Torus-connected cycles: A simple and scalable topology for interconnection networks. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 4, pp. 723-735. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_4_a1/
[1] Al Faisal, F. and Rahman, M. (2009). Symmetric tori connected torus network, Proceedings of the 12th International Conference on Computers and Information Technology (ICCIT), Dhaka, Bangladesh, pp. 174–179.
[2] Bossard, A. and Kaneko, K. (2012a). Node-to-set disjoint-path routing in hierarchical cubic networks, The Computer Journal 55(12): 1440–1446.
[3] Bossard, A. and Kaneko, K. (2012b). The set-to-set disjoint-path problem in perfect hierarchical hypercubes, The Computer Journal 55(6): 769–775.
[4] Bossard, A. and Kaneko, K. (2013). Set-to-set disjoint paths routing in hierarchical cubic networks, The Computer Journal 57(2): 332–337.
[5] Bossard, A., Kaneko, K. and Peng, S. (2010). Node-to-set disjoint paths routing in metacube, Proceedings of the 22nd International Conference on Parallel and Distributed Computing and Systems (PDCS), Marina del Rey, CA, USA, pp. 289–296.
[6] Bossard, A., Kaneko, K. and Peng, S. (2011). A new node-to-set disjoint-path algorithm in perfect hierarchical hypercubes, The Computer Journal 54(8): 1372–1381.
[7] Camara, J.M., Moreto, M., Vallejo, E., Beivide, R., Miguel-Alonso, J., Martinez, C. and Navaridas, J. (2010). Twisted torus topologies for enhanced interconnection networks, IEEE Transactions on Parallel and Distributed Systems 21(12): 1765–1778.
[8] Duato, J., Yalamanchili, S. and Ni, L. (2003). Interconnection Networks: An Engineering Approach, Morgan Kaufmann, San Francisco, CA.
[9] Ghose, K. and Desai, K.R. (1995). Hierarchical cubic network, IEEE Transactions on Parallel and Distributed Systems 6(4): 427–435.
[10] Horiguchi, S. and Ooki, T. (2000). Hierarchical 3d-torus interconnection network, Proceedings of the 5th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN), Dallas, TX, USA, pp. 50–56.
[11] Lai, C.-N. (2012). Optimal construction of all shortest node-disjoint paths in hypercubes with applications, IEEE Transactions on Parallel and Distributed Systems 23(6): 1129–1134.
[12] Li, Y., Peng, S. and Chu, W. (2004). Efficient collective communications in dual-cube, The Journal of Supercomputing 28(1): 71–90.
[13] Li, Y., Peng, S. and Chu, W. (2010). Metacube—a versatile family of interconnection networks for extremely large-scale supercomputers, Journal of Supercomputing 53(2): 329–351.
[14] Malluhi, Q.M. and Bayoumi, M.A. (1994). The hierarchical hypercube: A new interconnection topology for massively parallel systems, IEEE Transactions on Parallel and Distributed Systems 5(1): 17–30.
[15] Preparata, F.P. and Vuillemin, J. (1981). The cube-connected cycles: A versatile network for parallel computation, Communications of the ACM 24(5): 300–309.
[16] Seitz, C. (1985). The cosmic cube, Communications of the ACM 28(1): 22–33.
[17] Shih, Y.-K., Chuang, H.-C., Kao, S.-S. and Tan, J.J. (2010). Mutually independent Hamiltonian cycles in dual-cubes, Journal of Supercomputing 54(2): 239–251.
[18] Singh, A., Dally, W., Gupta, A. and Towles, B. (2003). Goal: A load-balanced adaptive routing algorithm for torus networks, SIGARCH Computer Architecture News 31(2): 194–205.
[19] TOP500 (2013). China’s Tianhe-2 supercomputer takes no. 1 ranking on 41st TOP500 list, http://top500.org/blog/lists/2013/06/press-release/, (last accessed in August 2013).
[20] Wu, J. and Sun, X.-H. (1994). Optimal cube-connected cube multicomputers, Journal of Microcomputer Applications 17(2): 135–146.
[21] Xiang, D. and Luo, W. (2012). An efficient adaptive deadlock-free routing algorithm for torus networks, IEEE Transactions on Parallel and Distributed Systems 23(5): 800–808.
[22] Zhou, S., Chen, L. and Xu, J. (2012a). Conditional fault diagnosability of dual-cubes, International Journal of Foundations of Computer Science 23(8): 1729–1748.
[23] Zhou, S., Lin, L. and Xu, J. (2012b). Conditional fault diagnosis of hierarchical hypercubes, International Journal of Computer Mathematics 89(16): 2152–2164.