Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_3_a9, author = {Merheb, A. R. and Noura, H. and Bateman, F.}, title = {Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {561--576}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_3_a9/} }
TY - JOUR AU - Merheb, A. R. AU - Noura, H. AU - Bateman, F. TI - Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 561 EP - 576 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_3_a9/ LA - en ID - IJAMCS_2015_25_3_a9 ER -
%0 Journal Article %A Merheb, A. R. %A Noura, H. %A Bateman, F. %T Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory %J International Journal of Applied Mathematics and Computer Science %D 2015 %P 561-576 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_3_a9/ %G en %F IJAMCS_2015_25_3_a9
Merheb, A. R.; Noura, H.; Bateman, F. Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 3, pp. 561-576. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_3_a9/
[1] Adigbli, P. (2007). Nonlinear attitude and position control of a micro quadrotor using sliding mode and backstepping techniques, 3rd US/European Competition and Workshop on Micro Air Vehicle Systems (MAV07)/European Micro Air VehicleConference and Flight Competition (EMAV2007), Toulouse, France, pp. 1–9.
[2] Bouabdallah, S. (2007). Design and Control of Quadrotors with Application to Autonomous Flying, Ph.D. thesis, Ecole Polytechnique Federale De Lausanne, Lausanne.
[3] Bouadi, H., Bouchoucha, M. and Tadjine, M. (2007). Sliding mode control based on backstepping approach for an UAV type-quadrotor, International Journal of Applied Mathematics and Computer Sciences 4(1): 12–17.
[4] Boudjedi, H., Yacef, F., Bouhali, O. and Rizoug, N. (2012). Dual neural network for adaptive sliding mode control of quadrotor helicopter stabilization, International Journal of Information Sciences and Techniques 2(4): 1–14.
[5] Das, A., Lewis, F.L. and Subbarao, K. (2011). Sliding mode approach to control quadrotor using dynamic inversion, in A. Bartoszewicz (Ed.), Challenges and Paradigms in Applied Robust Control, InTech, Rijeka.
[6] Edwards, C., Alwi, H. and Tan, C.P. (2012). Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems, International Journal of Applied Mathematics and Computer Science 22(1): 109–124, DOI: 10.2478/v10006-012-0008-7.
[7] Fliess, M. and Join, C. (2013). Model free control, International Journal of Control 86(12): 2228–2252.
[8] Fliess, M., Join, C. and Sira-Ramirez, H. (2008). Non-linear estimation is easy, International Journal of Modelling Identification and Control 4(1): 12–27.
[9] Hao, L.-Y. and Yang, G. (2013). Robust fault tolerant control based on sliding mode method for uncertain linear systems with quantization, ISA Transactions 52(5): 600–610.
[10] Jain, T., Yamé, J.J. and Sauter, D. (2012). Model-free reconfiguration mechanism for fault tolerance, International Journal of Applied Mathematics and Computer Science 22(1): 125–137, DOI: 10.2478/v10006-012-0009-6.
[11] Li, T., Zhang, Y. and Gordon, B.W. (2012). Passive and active nonlinear fault-tolerant control of a quadrotor unmanned aerial vehicle based on the sliding mode control technique, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 227(1): 12–23.
[12] Mahjoub, S., Mnif, F. and Derbel, N. (2011). Set point stabilization of a 2DOF underactuated manipulator, Journal of Computers 6(2): 368–376.
[13] Mboup, M., Fliess, M. and Join, C. (2009). Numerical differentiation with annihilators in noisy environment, Numerical Algorithms 50(4): 439–467.
[14] Merheb, A. and Noura, H. (2012). Novel bio-inspired stochastic tuning of a quadrotor PD controller, 2nd Annual Australian Control Conference (AUCC 2012), Sydney, Australia, pp. 227–232.
[15] Merheb, A., Noura, H. and Bateman, F. (2013). Passive fault tolerant control of quadrotor uav using regular and cascaded sliding mode control, 2nd International Conference on Control and Fault-Tolerant Systems (SysTol’13), Nice, France, pp. 330–335.
[16] Merheb, A., Noura, H. and Bateman, F. (2014). Active fault tolerant control of quadrotor uav using sliding mode control, 2014 International Conference on Unmanned Aircraft Systems (ICUAS14), Orlando, FL, USA, pp. 156–166.
[17] Mnasri, C. and Gasmi, M. (2011). LMI-based adaptive fuzzy integral sliding mode control of mismatched uncertain systems, International Journal of Applied Mathematics and Computer Science 21(4): 605–615, DOI: 10.2478/v10006-011-0047-5.
[18] Tang, Y. and Patton, R. (2012). Phase modulation of robust variable structure control for nonlinear aircraft, UKACC International Conference on Control (CONTROL 2012), Cardiff, UK.
[19] Wu, J., Weng, Z., Tian, Z. and Shi, S. (2008). Fault tolerant control for uncertain time-delay systems based on sliding mode control, Kybernetika 44(5): 617–632.
[20] Xu, D., Jiang, B. and Shi, P. (2012). Nonlinear actuator fault estimation observer: An inverse system approach via a T–S fuzzy model, International Journal of Applied Mathematics and Computer Science 22(1): 183–196, DOI: 10.2478/v10006-012-0014-9.
[21] Yu, X., Wei, S. and Guo, L. (2010). Cascade sliding mode control for bicycle robot, International Conference on Artificial Intelligence and Computational Intelligence, Sanya, China, pp. 62–66.
[22] Zhang, Y. and Chamseddine, A. (2012). Fault tolerant flight control techniques with application to a quadrotor UAV testbed, in D.T. Lombaerts (Ed.), Automatic Flight Control Systems—Latest Developments, InTech, Rijeka, pp. 119–150.