A sixth-order finite volume method for the 1D biharmonic operator: Application to intramedullary nail simulation
International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 3, pp. 529-537.

Voir la notice de l'article provenant de la source Library of Science

A new very high-order finite volume method to solve problems with harmonic and biharmonic operators for one-dimensional geometries is proposed. The main ingredient is polynomial reconstruction based on local interpolations of mean values providing accurate approximations of the solution up to the sixth-order accuracy. First developed with the harmonic operator, an extension for the biharmonic operator is obtained, which allows designing a very high-order finite volume scheme where the solution is obtained by solving a matrix-free problem. An application in elasticity coupling the two operators is presented. We consider a beam subject to a combination of tensile and bending loads, where the main goal is the stress critical point determination for an intramedullary nail.
Keywords: finite volume method, polynomial reconstruction operator, harmonic operator, biharmonic operator, high order method
@article{IJAMCS_2015_25_3_a6,
     author = {Costa, R. and Machado, G. J. and Clain, S.},
     title = {A sixth-order finite volume method for the {1D} biharmonic operator: {Application} to intramedullary nail simulation},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {529--537},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_3_a6/}
}
TY  - JOUR
AU  - Costa, R.
AU  - Machado, G. J.
AU  - Clain, S.
TI  - A sixth-order finite volume method for the 1D biharmonic operator: Application to intramedullary nail simulation
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2015
SP  - 529
EP  - 537
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_3_a6/
LA  - en
ID  - IJAMCS_2015_25_3_a6
ER  - 
%0 Journal Article
%A Costa, R.
%A Machado, G. J.
%A Clain, S.
%T A sixth-order finite volume method for the 1D biharmonic operator: Application to intramedullary nail simulation
%J International Journal of Applied Mathematics and Computer Science
%D 2015
%P 529-537
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_3_a6/
%G en
%F IJAMCS_2015_25_3_a6
Costa, R.; Machado, G. J.; Clain, S. A sixth-order finite volume method for the 1D biharmonic operator: Application to intramedullary nail simulation. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 3, pp. 529-537. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_3_a6/

[1] Audusse, E. and Bristeau, M.-O. (2007). Finite-volume solvers for a multilayer Saint-Venant system, International Journal of Applied Mathematics and Computer Science 17(3): 311–320, DOI: 10.2478/v10006-007-0025-0.

[2] Barreira, L., Teixeira, C. and Fonseca, E. (2008). Avaliação da resistência do colo do fémur utilizando o modelo de elementos finitos, Revista da Associação Portuguesa de Análise Experimental de Tensões 16: 19–24.

[3] Branco, C.M. (2011). Mecânica dos Materiais, Fundação Calouste Gulbenkian, Lisboa.

[4] Clain, S., Diot, S. and Loubère, R. (2011). A high-order polynomial finite volume method for hyperbolic system of conservation laws with multi-dimensional optimal order detection (MOOD), Journal of Computational Physics 230(10): 4028–4050.

[5] Clain, S., Machado, G.J., Nóbrega, J.M. and Pereira, R.M.S. (2013). A sixth-order finite volume method for the convection-diffusion problem with discontinuous coefficients, Computer Methods in Applied Mechanics and Engineering 267(1): 43–64.

[6] Diot, S., Clain, S. and Loubère, R. (2011). Multi-dimensional optimal order detection (mood)—a very high-order finite volume scheme for conservation laws on unstructured meshes, 6th Finite Volume and Complex Application, Prague, Czech Republic, pp. 263–271.

[7] Dumbser, M. and Munz, C.-D. (2007). On source terms and boundary conditions using arbitrary high order discontinuous Galerkin schemes, International Journal of Applied Mathematics and Computer Science 17(3): 297–310, DOI: 10.2478/v10006-007-0024-1.

[8] Eymard, R., Gallouët, T. and Herbin, R. (2000). The finite volume method, in P. Ciarlet and J.L. Lions (Eds.), Handbook for Numerical Analysis, North Holland, Amsterdam, pp. 715–1022.

[9] Hernández, J. (2002). High-order finite volume schemes for the advection-diffusion equation, International Journal for Numerical Methods in Engineering 53(5): 1211–1234.

[10] Kroner, D. (1997). Numerical Schemes for Conservation Laws, Wiley-Teubneur Publishers, Chichester.

[11] Leveque, R.J. (2002). Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge.

[12] Ollivier-Gooch, C. and Altena, M.V. (2002). A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation, Journal of Computational Physics 181(2): 729–752.

[13] Ramos, A. and Simoes, J.A. (2009). Caracterização de cavilhas de fixação intra-medular de estabilização de fracturas ósseas, Revista da Associação Portuguesa de Análise Experimental de Tensões 17: 49–55.

[14] Toro, E. (2009). Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin/Heidelberg.

[15] Toro, E. and Hidalgo, A. (2009). Ader finite volume schemes for nonlinear reaction–diffusion equations, Applied Numerical Mathematics 59(1): 73–100.

[16] Trangenstein, J.A. (2009). Numerical Solution of Hyperbolic Partial Differential Equations, Cambridge University Press, Cambridge.