Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_3_a6, author = {Costa, R. and Machado, G. J. and Clain, S.}, title = {A sixth-order finite volume method for the {1D} biharmonic operator: {Application} to intramedullary nail simulation}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {529--537}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_3_a6/} }
TY - JOUR AU - Costa, R. AU - Machado, G. J. AU - Clain, S. TI - A sixth-order finite volume method for the 1D biharmonic operator: Application to intramedullary nail simulation JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 529 EP - 537 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_3_a6/ LA - en ID - IJAMCS_2015_25_3_a6 ER -
%0 Journal Article %A Costa, R. %A Machado, G. J. %A Clain, S. %T A sixth-order finite volume method for the 1D biharmonic operator: Application to intramedullary nail simulation %J International Journal of Applied Mathematics and Computer Science %D 2015 %P 529-537 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_3_a6/ %G en %F IJAMCS_2015_25_3_a6
Costa, R.; Machado, G. J.; Clain, S. A sixth-order finite volume method for the 1D biharmonic operator: Application to intramedullary nail simulation. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 3, pp. 529-537. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_3_a6/
[1] Audusse, E. and Bristeau, M.-O. (2007). Finite-volume solvers for a multilayer Saint-Venant system, International Journal of Applied Mathematics and Computer Science 17(3): 311–320, DOI: 10.2478/v10006-007-0025-0.
[2] Barreira, L., Teixeira, C. and Fonseca, E. (2008). Avaliação da resistência do colo do fémur utilizando o modelo de elementos finitos, Revista da Associação Portuguesa de Análise Experimental de Tensões 16: 19–24.
[3] Branco, C.M. (2011). Mecânica dos Materiais, Fundação Calouste Gulbenkian, Lisboa.
[4] Clain, S., Diot, S. and Loubère, R. (2011). A high-order polynomial finite volume method for hyperbolic system of conservation laws with multi-dimensional optimal order detection (MOOD), Journal of Computational Physics 230(10): 4028–4050.
[5] Clain, S., Machado, G.J., Nóbrega, J.M. and Pereira, R.M.S. (2013). A sixth-order finite volume method for the convection-diffusion problem with discontinuous coefficients, Computer Methods in Applied Mechanics and Engineering 267(1): 43–64.
[6] Diot, S., Clain, S. and Loubère, R. (2011). Multi-dimensional optimal order detection (mood)—a very high-order finite volume scheme for conservation laws on unstructured meshes, 6th Finite Volume and Complex Application, Prague, Czech Republic, pp. 263–271.
[7] Dumbser, M. and Munz, C.-D. (2007). On source terms and boundary conditions using arbitrary high order discontinuous Galerkin schemes, International Journal of Applied Mathematics and Computer Science 17(3): 297–310, DOI: 10.2478/v10006-007-0024-1.
[8] Eymard, R., Gallouët, T. and Herbin, R. (2000). The finite volume method, in P. Ciarlet and J.L. Lions (Eds.), Handbook for Numerical Analysis, North Holland, Amsterdam, pp. 715–1022.
[9] Hernández, J. (2002). High-order finite volume schemes for the advection-diffusion equation, International Journal for Numerical Methods in Engineering 53(5): 1211–1234.
[10] Kroner, D. (1997). Numerical Schemes for Conservation Laws, Wiley-Teubneur Publishers, Chichester.
[11] Leveque, R.J. (2002). Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge.
[12] Ollivier-Gooch, C. and Altena, M.V. (2002). A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation, Journal of Computational Physics 181(2): 729–752.
[13] Ramos, A. and Simoes, J.A. (2009). Caracterização de cavilhas de fixação intra-medular de estabilização de fracturas ósseas, Revista da Associação Portuguesa de Análise Experimental de Tensões 17: 49–55.
[14] Toro, E. (2009). Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin/Heidelberg.
[15] Toro, E. and Hidalgo, A. (2009). Ader finite volume schemes for nonlinear reaction–diffusion equations, Applied Numerical Mathematics 59(1): 73–100.
[16] Trangenstein, J.A. (2009). Numerical Solution of Hyperbolic Partial Differential Equations, Cambridge University Press, Cambridge.