Event monitoring of parallel computations
International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 2, pp. 311-321.

Voir la notice de l'article provenant de la source Library of Science

The paper considers the monitoring of parallel computations for detection of abnormal events. It is assumed that computations are organized according to an event model, and monitoring is based on specific test sequences.
Keywords: parallel computations, monitoring, discrete event system, real time system
Mots-clés : obliczenia równoległe, układ zdarzeń dyskretnych, system czasu rzeczywistego
@article{IJAMCS_2015_25_2_a9,
     author = {Gruzlikov, A. M. and Kolesov, N. V. and Tolmacheva, M. V.},
     title = {Event monitoring of parallel computations},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {311--321},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a9/}
}
TY  - JOUR
AU  - Gruzlikov, A. M.
AU  - Kolesov, N. V.
AU  - Tolmacheva, M. V.
TI  - Event monitoring of parallel computations
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2015
SP  - 311
EP  - 321
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a9/
LA  - en
ID  - IJAMCS_2015_25_2_a9
ER  - 
%0 Journal Article
%A Gruzlikov, A. M.
%A Kolesov, N. V.
%A Tolmacheva, M. V.
%T Event monitoring of parallel computations
%J International Journal of Applied Mathematics and Computer Science
%D 2015
%P 311-321
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a9/
%G en
%F IJAMCS_2015_25_2_a9
Gruzlikov, A. M.; Kolesov, N. V.; Tolmacheva, M. V. Event monitoring of parallel computations. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 2, pp. 311-321. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a9/

[1] Cabasino, M.P., Giua, A. and Seatzu, C. (2011). Discrete event diagnosis using labeled Petri nets: An application to manufacturing systems, Control Engineering Practice 19(9): 989–1001.

[2] Chanthery, E. and Pencole, Y. (2009). Monitoring and active diagnosis for discrete-event systems, Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Techinal Process, Barcelona, Spain, pp. 1545–1550.

[3] Cheng, A.M.K. (2002). Real-Time Systems: Scheduling, Analysis and Verification, Wiley-Interscience Publication, Inc., Hoboken, NJ.

[4] Kolesov, N.V. (1988). Diagnosis of linear discrete-time nonstationary systems, Automation and Remote Control 49(7): 943–948.

[5] Kolesov, N.V. (1990). Nonstationary diagnostic model of communication system in a distributed control complex, Automation and Remote Control 51(4): 540–549.

[6] Lefebvre, D. (2012). Diagnosis with Petri nets according to partial events and states observation, Proceedings of the 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Mexico City, Mexico, pp. 1244–1249.

[7] Patton, R.J., Frank, P.M. and Clark, R.N. (2000). Issues in Fault Diagnosis for Dynamic Systems, Springer-Verlag, London.

[8] Peterson, J.L. (1981). Petri Net, Prentice-Hall, Englewood Cliffs, NJ.

[9] Wu, Y. and Hadrjicostis, C. (2005). Algebraic approaches for fault identification in discrete-event systems, IEEE Robotics and Automation 50(12): 2048–2053.

[10] Zhirabok, A. N. (2009). Robust observer design: Logic-dynamic approach, Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Process, Barcelona, Spain, pp. 768–791.