Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_2_a5, author = {Agwa, M. A. and Pinto da Costa, A.}, title = {Using symbolic computation in the characterization of frictional instabilities involving orthotropic materials}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {259--267}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a5/} }
TY - JOUR AU - Agwa, M. A. AU - Pinto da Costa, A. TI - Using symbolic computation in the characterization of frictional instabilities involving orthotropic materials JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 259 EP - 267 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a5/ LA - en ID - IJAMCS_2015_25_2_a5 ER -
%0 Journal Article %A Agwa, M. A. %A Pinto da Costa, A. %T Using symbolic computation in the characterization of frictional instabilities involving orthotropic materials %J International Journal of Applied Mathematics and Computer Science %D 2015 %P 259-267 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a5/ %G en %F IJAMCS_2015_25_2_a5
Agwa, M. A.; Pinto da Costa, A. Using symbolic computation in the characterization of frictional instabilities involving orthotropic materials. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 2, pp. 259-267. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a5/
[1] Adams, G. (1995). Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction, ASME, Journal of Applied Mechanics 62(4): 867–872.
[2] Agwa, M. and Pinto da Costa, A. (2008). Instability of frictional contact states in infinite layers, European Journal of Mechanics, A: Solids 27(3): 487–503.
[3] Agwa, M. and Pinto da Costa, A. (2011). Surface instabilities in linear orthotropic half-spaces with a frictional interface, ASME, Journal of Applied Mechanics 78(4), Paper 041002.
[4] Batoz, J.-L. and Dhatt, G. (1990). Modélization des Structures par Éléments Finis. Vol. 1: solides élastiques, Herme`s, Paris.
[5] Ibrahim, R. (1994). Friction-induced vibration, chatter, squeal, and chaos, Part I:Mechanics of contact and friction, Part II: Dynamics and modeling, ASME, Applied Mechanics Reviews 47(7): 209–253.
[6] Maple (2013). Maplesoft software company, http://www.maplesoft.com/.
[7] Martins, J., Faria, L. and Guimarães, J. (1992). Dynamic surface solutions in linear elasticity with frictional boundary conditions, in R. Ibrahim and A.A. Soom (Eds.), Friction-Induced Vibration, Chatter, Squeal and Chaos, ASME, New York, NY, pp. 33–39.
[8] Martins, J., Guimarães, J. and Faria, L. (1995). Dynamic surface solutions in linear elasticity and viscoelasticity with frictional boundary conditions, ASME, Journal of Vibration and Acoustics 117(4): 445–451.
[9] Martins, J. and Raous, M. (Eds.) (2002). Friction and Instabilities, Springer, Vienna.
[10] Pinto da Costa, A. and Agwa, M. (2009). Frictional instabilities in orthotropic hollow cylinders, Computers and Structures 87(21–22): 1275–1286.
[11] Rand, O. and Rovenski, V. (2005). Analytical Methods in Anisotropic Elasticity with Symbolic Computational Tools, Birkhauser, Basel.