Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_2_a15, author = {Wang, D. and Hryniewicz, O.}, title = {A fuzzy nonparametric {Shewhart} chart based on the bootstrap approach}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {389--401}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a15/} }
TY - JOUR AU - Wang, D. AU - Hryniewicz, O. TI - A fuzzy nonparametric Shewhart chart based on the bootstrap approach JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 389 EP - 401 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a15/ LA - en ID - IJAMCS_2015_25_2_a15 ER -
%0 Journal Article %A Wang, D. %A Hryniewicz, O. %T A fuzzy nonparametric Shewhart chart based on the bootstrap approach %J International Journal of Applied Mathematics and Computer Science %D 2015 %P 389-401 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a15/ %G en %F IJAMCS_2015_25_2_a15
Wang, D.; Hryniewicz, O. A fuzzy nonparametric Shewhart chart based on the bootstrap approach. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 2, pp. 389-401. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a15/
[1] Cen, Y. (1996). Fuzzy quality and analysis on fuzzy probability, Fuzzy Sets and Systems 83(2): 283–290.
[2] Cheng, C.-B. (2005). Fuzzy process control: Construction of control charts with fuzzy numbers, Fuzzy Sets and Systems 154(2): 287–303.
[3] Couso, I., Dubois, D., Montes, S. and Sanchez, L. (2007). On various definitions of the variance of a fuzzy random variable, Proceedings of the 5th International Symposium on Imprecise Probabilities and Their Applications, Prague, Czech Republic, www.sipta.org/isipta07/proceedings/056.html.
[4] Dubois, D. and Prade, H. (1983). Ranking fuzzy numbers in the setting of possibility theory, Information Sciences 30(3): 183–224.
[5] Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap, Chapman-Hall, New York, NY.
[6] Faraz, A. and Shapiro, A. (2010). An application of fuzzy random variables to control charts, Fuzzy Sets and Systems 161(20): 2684–2694.
[7] Feng, Y., Hu, L. and Shu, H. (2001). The variance and covariance of fuzzy random variables and their applications, Fuzzy Sets and Systems 120(3): 487–497.
[8] Féron, R. (1976). Ensembles aléatoires flous, Comptes Rendus de l’Academie des Sciences Serie A 282: 903–906.
[9] Gil, M., López-Diaz, M. and Ralescu, D.A. (2006). Overview on the development of fuzzy random variables, Fuzzy Sets and Systems 157(19): 2546–2557.
[10] Grzegorzewski, P. and Hryniewicz, O. (2000). Soft methods in statistical quality control, Control and Cybernetics 29(1): 119–140.
[11] Gülbay, M. and Kahraman, C. (2006). Development of fuzzy process control charts and fuzzy unnatural pattern analysis, Computational Statistics and Data Analysis 51(1): 433–451.
[12] Gülbay, M. and Kahraman, C. (2007). An alternative approach to fuzzy control charts: Direct fuzzy approach, Information Sciences 177(6): 1463–1480.
[13] Höppner, J. (1994). Statistische Prozeßkontrolle mit Fuzzy-Daten, Ph.D. thesis, University of Ulm, Ulm.
[14] Höppner, J. and Wolff, H. (1995). The design of a Shewhart control chart for fuzzy data, Technical report, University of Ulm, Würzburg.
[15] Hryniewicz, O. (2006). Possibilistic decisions and fuzzy statistical tests, Fuzzy Sets and Systems 157(19): 2665–2673.
[16] Kanagawa, A., Tamaki, F. and Ohta, H. (1993). Control charts for process average and variability based on linguistic data, International Journal of Production Research 2(4): 913–922.
[17] Körner, R. (1997). On the variance of fuzzy random variables, Fuzzy Sets and Systems 92(1): 83–93.
[18] Körner, R. (2000). An asymptotic α-test for the expectation of random fuzzy variables, Journal of Statistical Planning and Inference 83(2): 331–346.
[19] Kruse, R. and Meyer, K. (1987). Statistics with Vague Data, D. Riedel, Dordrecht.
[20] Kwakernaak, H. (1978). Fuzzy random variables, Part I: Definitions and theorems, Information Sciences 15(1): 1–15.
[21] Kwakernaak, H. (1979). Fuzzy random variables, Part II: Algorithms and examples for the discrete case, Information Sciences 17(3): 253–278.
[22] Liu, R. and Tang, J. (1996). Control charts for dependent and independent measurements based on bootstrap methods, Journal of American Statistical Association 91(436): 1694–1700.
[23] Montenegro, M., Colubi, A., Casals, M. and Gil, M. (2004). Asymptotic and bootstrap techniques for testing the expected value of a fuzzy random variable, Metrika 59(1): 31–49.
[24] Näther, W. (2000). On random fuzzy variables of second order and their application to linear statistical inference with fuzzy data, Metrika 51(3): 201–221.
[25] Näther, W. (2006). Regression with fuzzy random data, Computational Statistics and Data Analysis 51(1): 235–252.
[26] Nelson, L. (1985). Interpreting Shewhart X control chart, Journal of Quality Technology 17(2): 114–116.
[27] Puri, M. and Ralescu, D. (1986). Fuzzy random variables, Journal of Mathematical Analysis and Applications 114(2): 409–422.
[28] Raz, T. and Wang, J. (1990). Probabilistic and membership approaches in the construction of control charts for linguistic data, Production Planning Control 1(3): 147–157.
[29] Senturk, S. and Erginel, N. (2009). Development of fuzzy [...]and [...] control charts using α-cuts, Information Sciences 179(10): 1542–1551.
[30] Shu, M.-H. andWu, H.-C. (2011). Fuzzy X and r control charts: Fuzzy dominance approach, Computers Industrial Engineering 61(3): 676–685.
[31] Taleb, H. (2009). Control charts applications for multivariate attribute processes, Computers Industrial Engineering 56(1): 399–410.
[32] Taleb, H. and Limam, M. (2002). On fuzzy and probabilistic control charts, International Journal of Production Research 40(12): 2849–2863.
[33] Wang, J. and Raz, T. (1990). On the construction of control charts using linguistic variables, International Journal of Production Research 28: 477–487.
[34] Wetherill, B. and Brown, D. (1991). Statistical Process Control, Chapman and Hall, London.
[35] Woodall, W.H. Tsui, K.-L. and Tucker, G.R. (1997). A review of statistical and fuzzy quality control charts based on categorical data, in H.-H. Lenz and P.-Th. Wilrich (Eds.), Frontiers in Statistical Quality Control 5, Physica-Verlag, Heidelberg, pp. 83–89.
[36] Zadeh, L. (1965). Fuzzy sets, Information and Control 8(3): 338–353.
[37] Zadeh, L. (1975). The concept of a linguistic variable and its application to approximate reasoning, Parts 1 and 2, Information Sciences 8(3): 199–249, 8(4): 301–357.