Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_2_a11, author = {Trejo, K. K. and Clempner, J. B. and Poznyak, A. S.}, title = {Computing the {Stackelberg/Nash} equilibria using the extraproximal method: {Convergence} analysis and implementation details for {Markov} chains games}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {337--351}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a11/} }
TY - JOUR AU - Trejo, K. K. AU - Clempner, J. B. AU - Poznyak, A. S. TI - Computing the Stackelberg/Nash equilibria using the extraproximal method: Convergence analysis and implementation details for Markov chains games JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 337 EP - 351 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a11/ LA - en ID - IJAMCS_2015_25_2_a11 ER -
%0 Journal Article %A Trejo, K. K. %A Clempner, J. B. %A Poznyak, A. S. %T Computing the Stackelberg/Nash equilibria using the extraproximal method: Convergence analysis and implementation details for Markov chains games %J International Journal of Applied Mathematics and Computer Science %D 2015 %P 337-351 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a11/ %G en %F IJAMCS_2015_25_2_a11
Trejo, K. K.; Clempner, J. B.; Poznyak, A. S. Computing the Stackelberg/Nash equilibria using the extraproximal method: Convergence analysis and implementation details for Markov chains games. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 2, pp. 337-351. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_2_a11/
[1] Antipin, A.S. (2005). An extraproximal method for solving equilibrium programming problems and games, Computational Mathematics and Mathematical Physics 45(11): 1893–1914.
[2] Bos, D. (1986). Public Enterprise Economics, North-Holland, Amsterdam.
[3] Bos, D. (1991). Privatization: A Theoretical Treatment, Clarendon Press, Oxford.
[4] Breitmoser, Y. (2012). On the endogeneity of Cournot, Bertrand, and Stackelberg competition in oligopolies, International Journal of Industrial Organization 30(1): 16–29.
[5] Clempner, J.B. and Poznyak, A.S. (2011). Convergence method, properties and computational complexity for Lyapunov games, International Journal of Applied Mathematics and Computer Science 21(2): 349–361, DOI: 10.2478/v10006-011-0026-x.
[6] Clempner, J.B. and Poznyak, A.S. (2014). Simple computing of the customer lifetime value: A fixed local-optimal policy approach, Journal of Systems Science and Systems Engineering 23(4): 439–459.
[7] De Fraja, G. and Delbono, F. (1990 ). Game theoretic models of mixed oligopoly, Journal of Economic Surveys 4(1): 1–17.
[8] Harris, R. and Wiens, E. (1980). Government enterprise: An instrument for the internal regulation of industry, Canadian Journal of Economics 13(1): 125–132.
[9] Karpowicz, M.P. (2012). Nash equilibrium design and price-based coordination in hierarchical systems, International Journal of Applied Mathematics and Computer Science 22(4): 951–969, DOI: 10.2478/v10006-012-0071-0.
[10] Merril, W. and Schneider, N. (1966). Government firms in oligopoly industries: A short-run analysis, Quarterly Journal of Economics 80(5): 400–412.
[11] Moya, S. and Poznyak, A.S. (2009). Extraproximal method application for a Stackelberg–Nash equilibrium calculation in static hierarchical games, IEEE Transactions on Systems, Man, and Cybernetics, B: Cybernetics 39(6): 1493–1504.
[12] Nett, L. (1993). Mixed oligopoly with homogeneous goods, Annals of Public and Cooperative Economics 64(3): 367–393.
[13] Nowak, P. and Romaniuk, M. (2013). A fuzzy approach to option pricing in a Levy process setting, International Journal of Applied Mathematics and Computer Science 23(3): 613–622, DOI: 10.2478/amcs-2013-0046.
[14] Poznyak, A.S. (2009). Advance Mathematical Tools for Automatic Control Engineers, Vol. 1: Deterministic Techniques, Elsevier, Amsterdam.
[15] Poznyak, A.S., Najim, K. and Gomez-Ramirez, E. (2000). Selflearning Control of Finite Markov Chains, Marcel Dekker, Inc., New York, NY.
[16] Tanaka, K. and Yokoyama, K. (1991). On ε-equilibrium point in a noncooperative n-person game, Journal of Mathematical Analysis and Applications 160(2): 413–423.
[17] Trejo, K.K., Clempner, J.B. and Poznyak, A.S. (2015). A stackelberg security game with random strategies based on the extraproximal theoretic approach, Engineering Applications of Artificial Intelligence 37: 145–153.
[18] Vickers, J. and Yarrow., G. (1998). Privatization—An Economic Analysis, MIT Press, Cambridge, MA.
[19] von Stackelberg, H. (1934). Marktform und Gleichgewicht, Springer, Vienna.