Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_1_a2, author = {Franz\`e, G. and Furfaro, A. and Mattei, M. and Scordamaglia, V.}, title = {A safe supervisory flight control scheme in the presence of constraints and anomalies}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {39--51}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_1_a2/} }
TY - JOUR AU - Franzè, G. AU - Furfaro, A. AU - Mattei, M. AU - Scordamaglia, V. TI - A safe supervisory flight control scheme in the presence of constraints and anomalies JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 39 EP - 51 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_1_a2/ LA - en ID - IJAMCS_2015_25_1_a2 ER -
%0 Journal Article %A Franzè, G. %A Furfaro, A. %A Mattei, M. %A Scordamaglia, V. %T A safe supervisory flight control scheme in the presence of constraints and anomalies %J International Journal of Applied Mathematics and Computer Science %D 2015 %P 39-51 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_1_a2/ %G en %F IJAMCS_2015_25_1_a2
Franzè, G.; Furfaro, A.; Mattei, M.; Scordamaglia, V. A safe supervisory flight control scheme in the presence of constraints and anomalies. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 1, pp. 39-51. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_1_a2/
[1] Angeli, D., and Mosca, E. (1999). Command governors for constrained nonlinear systems, IEEE Transactions on Automatic Control 44(4): 816–820.
[2] Angeli, D., Casavola, A. and Mosca, E. (2001). On feasible set-membership state estimators in constrained command governor control, Automatica 37(1): 151–156.
[3] Bacconi, F., Mosca, E. and Casavola, A. (2007). Hybrid constrained formation flying control of micro-satellites, IET Control Theory Applications 1(2): 513–521.
[4] Bemporad, A., Casavola, A. and Mosca, E. (1997). Nonlinear control of constrained linear systems via predictive reference management, IEEE Transactions on Automatic Control 42(3): 340–349.
[5] Bemporad, A. (1998). Reference governor for constrained nonlinear systems, IEEE Transactions on Automatic Control 43(3): 415–419.
[6] Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heroux, M., Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K. and Whaley R.C. (2003). An updated set of basic linear algebra subprograms (BLAS), ACM Transactions on Mathematical Software 28(2): 135–151.
[7] Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2006). Diagnosis and Fault Tolerant Control, Springer-Verlag, Berlin/Heidelberg.
[8] Branicky, M.S. (1998). Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic Control 43(4): 475–482.
[9] Chen, S.H., Tao, G., and Joshi, S.M. (2002). On matching conditions for adaptive state tracking control of systems with actuator failures, IEEE Transactions on Automatic Control 47(3): 473–478.
[10] Famularo, D., Franzè, G., Furfaro, A. and Mattei, M. (2011). A hybrid real-time supervisory scheme for nonlinear systems, Proceedings of the 2011 American Control Conference, ACC 2011, San Francisco CA, USA, pp. 305–310.
[11] Franzè, G., Furfaro, A., Mattei, M. and Scordamaglia, V. (2013). An hybrid command governor supervisory scheme for flight control systems subject to unpredictable anomalies, Proceedings of the 2nd International Conference on Control and Fault-Tolerant Systems, Nice, France, (CD-ROM).
[12] Gao, Z. and Antsaklis, P.K. (1991). Stability of the pseudo-inverse method for reconfigurable control systems, International Journal of Control 53(3): 717–729.
[13] Garone, E., Tedesco, F., and Casavola, A. (2010). A feed-forward command governor strategy for constrained linear systems, Proceedings of Nolcos 2010, Bologna, Italy.
[14] Gilbert, E.G., Kolmanovsky, I. and Tin Tan, K. (1995). Discrete-time reference governors and the nonlinear control of systems with state and control constraint, International Journal of Robust and Nonlinear Control 5(5): 487–504.
[15] Gilbert, E.G. and Kolmanovsky, I. (1999). Fast reference governors for systems with state and control constraint and disturbance inputs, International Journal of Robust and Nonlinear Control 9(15): 1117–1141.
[16] Guo, C. and Song, Q. (1999). Real-time control of variable air volume system based on a robust neural network assisted PI controller, IEEE Transactions on Control Systems Technology 17(3): 600–607.
[17] Iserman, R.. and Ballè, P. (1997). Trends in the application of model-based fault detection and diagnosis of technical processes, Control Engineering Practice 5(5): 709–719.
[18] Khalil, H.K. (1996). Nonlinear Systems, Prentice Hall, Upper Saddle River, NJ.
[19] Magree, D., Yucelen, T., and Johnson, E.N. (2012). Command governor-based adaptive control of an autonomous helicopter, Proceedings of the AIAA Conference, Minneapolis, MI, USA, pp. 1–13.
[20] Mattei, M., Famularo, D. and Labate, C.V. (2013). A constrained control strategy for the shape control in thermonuclear fusion tokamaks, Automatica 49(1): 169–177.
[21] Mhaskar, P., McFall, C., Gani, A., Christofides, P.D., and Davis, J. F. (2008). Isolation and handling of actuator faults in nonlinear systems, Automatica 44(1): 53–62.
[22] Micksh, T., Gambier A. and Badreddin, E. (2008). Real-time implementation of fault-tolerant control using model predictive control, Proceedings of the 17th IFAC World Congress, Seoul, Korea, pp. 11136–11141.
[23] Park, S.J. and Yang, J.M. (2009). Supervisory control for real-time scheduling of periodic and sporadic tasks with resource constraint, Automatica 45(11): 2597–2604.
[24] Patton, R.J. (1997). Real-time implementation of fault-tolerant control using model predictive control, Proceedings of the 3rd IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes, Hull, UK, pp. 1033–1055.
[25] Scordamaglia, V., Sollazzo A. and Mattei, M. (2012). Fixed structure flight control design of an over-actuated aircraft in the presence of actuators with different dynamic performance, Proceedings of the 7th IFAC Symposium on Robust Control Design, Aalborg, Denmark, (CD-ROM).
[26] Seron, M.M., De Dona, J.A., and Olaru, S. (2013). Fault tolerant control allowing sensor healthy-to-faulty and faulty-to-healthy transitions, IEEE Transactions on Automatic Control 57(7): 1657–1669.
[27] Staroswiecki, M. (2010). On reconfiguration-based fault tolerance, Proceedings of the 18th Mediterranean Conference on Control and Automation (MED), Marrakech, Marocco, pp. 1681–1691.
[28] Stevens, B.R. and Lewis, F.L. (1992). Aircraft Control and Simulation, Wiley Interscience, New York, NY.
[29] Steffen, T. (2005). Control Reconfiguration of Dynamical Systems, Lecture Notes in Control and Information Science, Vol. 320, Springer-Verlag, Berlin/Heidelberg.
[30] Tan, W. and Packard, A. (2008). Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of-squares programming, IEEE Transactions on Automatic Control 53(2): 565–571.
[31] Zhang, Y. and Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant control systems, Annual Reviews in Control 32(2): 229–252.
[32] Wang, Y. and Boyd, S. (2010). Fast model predictive control using online optimization, IEEE Transactions on Control Systems Technology 18(2): 267–278.