Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2015_25_1_a11, author = {Cen, Z. and Noura, H. and Younes, Y. A.}, title = {Systematic fault tolerant control based on adaptive {Thau} observer estimation for quadrotor {UAVs}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {159--174}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_1_a11/} }
TY - JOUR AU - Cen, Z. AU - Noura, H. AU - Younes, Y. A. TI - Systematic fault tolerant control based on adaptive Thau observer estimation for quadrotor UAVs JO - International Journal of Applied Mathematics and Computer Science PY - 2015 SP - 159 EP - 174 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_1_a11/ LA - en ID - IJAMCS_2015_25_1_a11 ER -
%0 Journal Article %A Cen, Z. %A Noura, H. %A Younes, Y. A. %T Systematic fault tolerant control based on adaptive Thau observer estimation for quadrotor UAVs %J International Journal of Applied Mathematics and Computer Science %D 2015 %P 159-174 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_1_a11/ %G en %F IJAMCS_2015_25_1_a11
Cen, Z.; Noura, H.; Younes, Y. A. Systematic fault tolerant control based on adaptive Thau observer estimation for quadrotor UAVs. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) no. 1, pp. 159-174. http://geodesic.mathdoc.fr/item/IJAMCS_2015_25_1_a11/
[1] Berbra, C., Lesecq, S. and Martinez, J. (2008). A multi-observer switching strategy for fault-tolerant control of a quadrotor helicopter, 16th Mediterranean Conference on Control and Automation, 2008, Ajaccio, France, pp. 1094–1099.
[2] Bouadi, H., Bouchoucha, M. and Tadjine, M. (2007). Sliding mode control based on backstepping approach for an UAV type-quadrotor, International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering 1(2): 22–27.
[3] Boussaid, B., Aubrun, C., Abdelkrim, M.N. and Ben Gayed, M.K. (2011). Performance evaluation based fault tolerant control with actuator saturation avoidance, International Journal of Applied Mathematics and Computer Science 21(3): 457–466, DOI: 10.2478/v10006-011-0034-x.
[4] Chamseddine, A., Zhang, Y. and Rabbath, C.A. (2012). Trajectory planning and re-planning for fault tolerant formation flight control of quadrotor unmanned aerial vehicles, American Control Conference (ACC), 2012, Montreal, QC, Canada, pp. 3291–3296.
[5] Chen, J. and Patton, R.J. (1999). Robust Model-based Fault Diagnosis for Dynamic Systems, Kluwer, Boston, MA.
[6] Du, M., Gandhi, R. and Mhaskar, P. (2011). An integrated fault detection and isolation and safe-parking framework for networked process systems, Industrial Engineering Chemistry Research 50(9): 5667–5679.
[7] Du, M. and Mhaskar, P. (2011). A safe-parking and safe-switching framework for fault-tolerant control of switched nonlinear systems, International Journal of Control 84(1): 9–23.
[8] Edwards, C., Alwi, H. and Tan, C.P. (2012). Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems, International Journal of Applied Mathematics and Computer Science 22(1): 109–124, DOI: 10.2478/v10006-012-0008-7.
[9] Fang, S. and Blanke, M. (2011). Fault monitoring and fault recovery control for position-moored vessels, International Journal of Applied Mathematics and Computer Science 21(3): 467–478, DOI: 10.2478/v10006-011-0035-9.
[10] Freddi, A., Longhi, S. and Monteriu, A. (2009). A model-based fault diagnosis system for a mini-quadrotor, 7th Workshop on Advanced Control and Diagnosis, Bari, Italy, pp. 19–20.
[11] Freddi, A., Longhi, S. and Monteriù, A. (2012). A diagnostic Thau observer for a class of unmanned vehicles, Journal of Intelligent Robotic Systems 67(1): 61–73.
[12] Gandhi, R. and Mhaskar, P. (2008). Safe-parking of nonlinear process systems, Computers Chemical Engineering 32(9): 2113–2122.
[13] Gandhi, R. and Mhaskar, P. (2009). A safe-parking framework for plant-wide fault-tolerant control, Chemical Engineering Science 64(13): 3060–3071.
[14] Izadi, H.A., Zhang, Y. and Gordon, B.W. (2011). Fault tolerant model predictive control of quad-rotor helicopters with actuator fault estimation, World Congress, Milan, Italy, Vol. 18, pp. 6343–6348.
[15] Jiang, B. and Chowdhury, F.N. (2005). Fault estimation and accommodation for linear MIMO discrete-time systems, IEEE Transactions on Control Systems Technology 13(3): 493–499.
[16] Jiang, B., Staroswiecki, M. and Cocquempot, V. (2006). Fault accommodation for nonlinear dynamic systems, IEEE Transactions on Automatic Control 51(9): 1578.
[17] Jiang, B., Zhang, K. and Shi, P. (2011). Integrated fault estimation and accommodation design for discrete-time Takagi–Sugeno fuzzy systems with actuator faults, IEEE Transactions on Fuzzy Systems 19(2): 291–304.
[18] Khebbache, H., Sait, B. and Yacef, F. (2012). Robust stabilization of a quadrotor aerial vehicle in presence of sensor failures, International Journal of Control Theory and Computer Modeling 2(2): 39–52.
[19] Khelassi, A., Theilliol, D. and Weber, P. (2011). Reconfigurability analysis for reliable fault-tolerant control design, International Journal of Applied Mathematics and Computer Science 21(3): 431–439, DOI: 10.2478/v10006-011-0032-z.
[20] Li, T., Zhang, Y. and Gordon, B. (2011). Fault tolerant control applied to a quadrotor unmanned helicopter, Proceedings of the 7th ASME/IEEE International Conference on Mechatronics Embedded Systems Applications, Washington, DC, USA, pp.1013–1022.
[21] Mahmood, M., Gandhi, R. and Mhaskar, P. (2008). Safe-parking of nonlinear process systems: Handling uncertainty and unavailability of measurements, Chemical Engineering Science 63(22): 5434–5446.
[22] Meng, L., Jiang, B. and Xu, Y. (2009). Observer-based robust fault diagnosis for a class of uncertain nonlinear systems, Chinese Control and Decision Conference, 2009, CCDC’09, Guilin, China, pp. 885–889.
[23] Montes de Oca, S., Puig, V., Witczak, M. and Dziekan, Ł. (2012). Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter, International Journal of Applied Mathematics and Computer Science 22(1): 161–171, DOI: 10.2478/v10006-012-0012-y.
[24] Pedro, J.O., Panday, A. and Dala, L. (2013). A nonlinear dynamic inversion-based neurocontroller for unmanned combat aerial vehicles during aerial refuelling, International Journal of Applied Mathematics and Computer Science 23(1): 75–90, DOI: 10.2478/amcs-2013-0007.
[25] Ranjbaran, M. and Khorasani, K. (2010). Fault recovery of an under-actuated quadrotor aerial vehicle, 49th IEEE Conference on Decision and Control (CDC), 2010, Atlanta, GA, USA, pp. 4385–4392.
[26] Sadeghzadeh, I., Mehta, A., Zhang, Y. and Rabbath, C.-A. (2011). Fault-tolerant trajectory tracking control of a quadrotor helicopter using gain-scheduled PID and model reference adaptive control, Annual Conference of the Prognostics and Health Management Society, Montreal, Canada, Vol. 2, pp. 1–10.
[27] Sharifi, F., Mirzaei, M., Gordon, B. W. and Zhang, Y. (2010). Fault tolerant control of a quadrotor UAV using sliding mode control, Conference on Control and Fault-Tolerant Systems (SysTol), 2010, Nice, France, pp. 239–244.
[28] Theilliol, D., Join, C. and Zhang, Y. (2008). Actuator fault tolerant control design based on a reconfigurable reference input, International Journal of Applied Mathematics and Computer Science 18(4): 553–560, DOI: 10.2478/v10006-008-0048-1.
[29] Yang, H., Jiang, B., Cocquempot, V. and Lu, L. (2012). Supervisory fault tolerant control with integrated fault detection and isolation: A switched system approach, International Journal of Applied Mathematics and Computer Science 22(1): 87–97, DOI: 10.2478/v10006-012-0006-9.
[30] Zhang, K., Jiang, B. and Shi, P. (2007). Adaptive observer-based fault diagnosis with application to satellite attitude control systems, Second International Conference on Innovative Computing, Information and Control, 2007, Kumamoto, Japan, pp. 508–508.
[31] Zhang, Y. and Chamseddine, A. (2012). Fault tolerant flight control techniques with application to a quadrotor UAV testbed, in T. Lombaerts (Ed.), Automatic Flight Control Systems—Latest Developments, InTech, Rijeka, pp. 119–150.
[32] Zhang, Y. and Jiang, J. (2003). Bibliographical review on reconfigurable fault-tolerant control systems, Proceedings of the 5th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes 2003, Washington, DC, USA, pp. 265–276.
[33] Zhang, Y. and Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant control systems, Annual Reviews in Control 32(2): 229–252.
[34] Zhaohui, C. and Noura, H. (2013a). An adaptive Thau observer for estimating the time-varying LOE fault of quadrotor actuators, Conference on Control and Fault-Tolerant Systems (SysTol), 2013, Nice, France, pp. 468–473.
[35] Zhaohui, C. and Noura, H. (2013b). A composite fault tolerant control based on fault estimation for quadrotor UAVs, Conference on Industrial Electronics and Applications (ICIEA), 2013 8th, Melbourne, Australia, pp. 236–241.
[36] Zhaohui, C., Noura, H., Susilo, T.B. and Al Younes, Y. (2013a). Engineering implementation on fault diagnosis for quadrotors based on nonlinear observer, 25th Chinese Control and Decision Conference (CCDC), 2013, Guiyang, China, pp. 2971–2975.
[37] Zhaohui, C., Noura, H., Susilo, T.B. and Al Younes, Y. (2013b). Robust fault diagnosis for quadrotor UAVs using adaptive Thau observer, Journal of Intelligent Robotic Systems 73(1–4): 1–16.
[38] Zhaohui, C., Noura, H. and Younes, Y.A. (2013c). Robust fault estimation on a real quadrotor UAV using optimized adaptive Thau observer, 2013 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, pp. 550–556.