Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_4_a6, author = {Assawinchaichote, W.}, title = {Further results on robust fuzzy dynamic systems with {LMI} {D-stability} constraints}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {785--794}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a6/} }
TY - JOUR AU - Assawinchaichote, W. TI - Further results on robust fuzzy dynamic systems with LMI D-stability constraints JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 785 EP - 794 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a6/ LA - en ID - IJAMCS_2014_24_4_a6 ER -
%0 Journal Article %A Assawinchaichote, W. %T Further results on robust fuzzy dynamic systems with LMI D-stability constraints %J International Journal of Applied Mathematics and Computer Science %D 2014 %P 785-794 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a6/ %G en %F IJAMCS_2014_24_4_a6
Assawinchaichote, W. Further results on robust fuzzy dynamic systems with LMI D-stability constraints. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 4, pp. 785-794. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a6/
[1] Assawinchaichote, W. (2012). A non-fragile H∞ output feedback controller for uncertain fuzzy dynamical systems with multiple time-scales, International Journal Computers, Communications Control 7(1): 8–16.
[2] Assawinchaichote, W. and Chayaopas, N. (2013). Robust H∞ fuzzy speed control design for brushless DC motor, International Conference on Computer, Electrical, and Systems Sciences, and Engineering, Tokyo, Japan, pp. 1592–1598.
[3] Assawinchaichote, W. and Nguang, S.K. (2004a). H∞ filtering for fuzzy singularly perturbed systems with pole placement constraints: An LMI approach, IEEE Transactions on Signal Processing 52(6): 1659–1667.
[4] Assawinchaichote, W. and Nguang, S.K. (2004b). H∞ fuzzy control design for nonlinear singularly perturbed systems with pole placement constraints: An LMI approach, IEEE Transactions on Systems, Man, and Cybernetics: Part B 34(1): 579–588.
[5] Assawinchaichote, W. and Nguang, S.K. (2006). Fuzzy H∞ output feedback control design for singularly perturbed systems with pole placement constraints: An LMI approach, IEEE Transactions Fuzzy Systems 14(3): 361–371.
[6] Ball, J.A., Helton, W.J. and Walker, M.L. (1993). H∞ control for nonlinear systems with output feedback, IEEE Transactions on Automatic Control 38(4): 546–559.
[7] Ball, J.A., Helton, W.J. and Walker, M.L. (1994). H∞ control of systems under norm bounded uncertainties in all systems matrices, IEEE Transactions on Automatic Control 39(6): 1320–1322.
[8] Basar, T. and Olsder, G.J. (1982). Dynamic Noncooperative Game Theory, Academic Press, New York, NY.
[9] Bouarar, T., Guelton, K. and Manamanni, N. (2013). Robust non-quadratic static output feedback controller design for Takagi–Sugeno systems using descriptor redundancy, Engineering Applications of Artificial Intelligence 26(42): 739–756.
[10] Boyd, S., Ghaoui, L.E., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in Systems and Control Theory, SIAM Books, Philadelphia, PA.
[11] Chayaopas, N. and Assawinchaichote, W. (2013). Speed control of brushless DC mortor with H∞ fuzzy controller based on LMI approach, International Conference Modelling, Indentification and Control, Phuket, Thailand, pp. 21–26.
[12] Chen, B.-S., Tseng, C.-S. and Uang, H.-J. (2000). Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: An LMI approach, IEEE Transactions on Fuzzy Systems 8(3): 249–265.
[13] Chilali, M. and Gahinet, P. (1996). H∞ design with pole placement constraints: An LMI approach, IEEE Transactions on Automatic Control 41(3): 358–367.
[14] Chilali, M., Gahinet, P. and Apkarian, P. (1999). Robust pole placement in LMI regions, IEEE Transactions on Automatic Control 44(12): 2257–2270.
[15] Fu, M., de Souza, C.E. and Xie, L. (1992). H∞ estimation for uncertain systems, International Journal of Robust and Nonlinear Control 2(1): 87–105.
[16] Gahinet, P., Nemirovski, A., Laub, A.J. and Chilali, M. (1995). LMI Control Toolbox—For Use with MATLAB, The MathWorks, Inc., Natick, MA.
[17] Han, Z.X. and Feng, G. (1998). State-feedback H∞ controllers design for fuzzy dynamic system using LMI technique, IEEE World Congress on Computational Intelligence, Anchorage, AL, USA, pp. 538–544.
[18] Han, Z.X., Feng, G., Walcott, B.L. and Zhang, Y.M. (2000). H∞ controller design of fuzzy dynamic systems with pole placement constraints, American Control Conference, Chicago, IL, USA, pp. 1939–1943.
[19] Hill, D.J. and Moylan, P.J. (1980). Dissipative dynamical systems: Basic input-output and state properties, Journal of the Franklin Institute 309(5): 327–357.
[20] Isidori, A. and Astolfi, A. (1992). Disturbance attenuation and H∞-control via measurement feedback in nonlinear systems, IEEE Transactions on Automatic Control 37(9): 1283–1293.
[21] Joh, J., Chen, Y.H. and Langari, R. (1998). On the stability issues of linear Takagi–Sugeno fuzzy models, IEEE Transactions on Fuzzy Systems 6(3): 402–410.
[22] Ma, X.J., Qi Sun, Z. and He, Y.Y. (1998). Analysis and design of fuzzy controller and fuzzy observer, IEEE Transactions on Fuzzy Systems 6(1): 41–51.
[23] Mansouri, B., Manamanni, N., Guelton, K., Kruszewski, A. and Guerra, T. (2009). Output feedback LMI tracking control conditions with H∞ criterion for uncertain and disturbed T–S models, Journal of the Franklin Institute 179(4): 446–457.
[24] Park, J., Kim, J. and Park, D. (2001). LMI-based design of stabilizing fuzzy controller for nonlinear system described by Takagi–Sugeno fuzzy model, Fuzzy Sets and Systems 122(1): 73–82.
[25] Rezac, M. and Hurak, Z. (2013). Structured MIMO design for dual-stage inertial stabilization: Case study for HIFOO and Hinfstruct solvers, Physics Procedia 23(8): 1084–1093.
[26] Scherer, C., Gahinet, P. and Chilali, M. (1997). Multiobjective output-feedback control via LMI optimization, IEEE Transactions on Automatic Control 42(7): 896–911.
[27] Tanaka, K., Ikeda, T. and Wang, H.O. (1996). Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stabilizability, H∞ control theory, and linear matrix inequality, IEEE Transactions on Fuzzy Systems 4(1): 1–13.
[28] Tanaka, K. and Sugeno, M. (1992). Stability analysis and design of fuzzy control systems, Fuzzy Sets and Systems 45(2): 135–156.
[29] Tanaka, K. and Sugeno, M. (1995). Stability and stabiliability of fuzzy neural linear control systems, IEEE Transactions on Fuzzy Systems 3(4): 438–447.
[30] Teixeira, M. and Zak, S.H. (1999). Stabilizing controller design for uncertain nonlinear systems using fuzzy models, IEEE Transactions on Fuzzy Systems 7(2): 133–142.
[31] van der Schaft, A.J. (1992). L2-gain analysis of nonlinear systems and nonlinear state feedback H∞ control, IEEE Transactions on Automatic Control 37(6): 770–784.
[32] Vesely, V., Rosinova, D. and Kucera, V. (2011). Robust static output feedback controller LMI based design via elimination, Journal of the Franklin Institute 348(9): 2468–2479.
[33] Wang, H.O., Tanaka, K. and Griffin, M.F. (1996). An approach to fuzzy control of nonlinear systems: Stability and design issues, IEEE Transactions on Fuzzy Systems 4(1): 14–23.
[34] Willems, J.C. (1972). Dissipative dynamical systems, Part I: General theory, Archive for Rational Mechanics and Analysis 45(5): 321–351.
[35] Wonham, W.M. (1970). Random differential equations in control theory, Probabilistic Methods in Applied Mathematics 2(3): 131–212.
[36] Yakubovich, V.A. (1967a). The method of matrix inequalities in the stability theory of nonlinear control system I, Automation and Remote Control 25(4): 905–917.
[37] Yakubovich, V.A. (1967b). The method of matrix inequalities in the stability theory of nonlinear control system II, Automation and Remote Control 26(4): 577–592.
[38] Yeh, K., Chen, C., Chen, C., Lo, D. and Chung, P. (2012). A fuzzy Lyapunov LMI criterion to a chaotic system, Physics Procedia 25(1): 262–269.
[39] Yoneyama, J., Nishikawa, M., Katayama, H. and Ichikawa, A. (2000). Output stabilization of Takagi–Sugeno fuzzy system, Fuzzy Sets and Systems 111(2): 253–266.
[40] Zadeh, L.A. (1965). Fuzzy set, Information and Control 8(3): 338–353.
[41] Zhang, J.M., Li, R.H. and Zhang, P.A. (2001). Stability analysis and systematic design of fuzzy control system, Fuzzy Sets and Systems 120(1): 65–72.