Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_4_a3, author = {Zeng, C. and Liang, S. and Zhang, Y. and Zhong, J. and Su, Y.}, title = {Improving the stability of discretization zeros with the {Taylor} method using a generalization of the fractional-order hold}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {745--757}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a3/} }
TY - JOUR AU - Zeng, C. AU - Liang, S. AU - Zhang, Y. AU - Zhong, J. AU - Su, Y. TI - Improving the stability of discretization zeros with the Taylor method using a generalization of the fractional-order hold JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 745 EP - 757 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a3/ LA - en ID - IJAMCS_2014_24_4_a3 ER -
%0 Journal Article %A Zeng, C. %A Liang, S. %A Zhang, Y. %A Zhong, J. %A Su, Y. %T Improving the stability of discretization zeros with the Taylor method using a generalization of the fractional-order hold %J International Journal of Applied Mathematics and Computer Science %D 2014 %P 745-757 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a3/ %G en %F IJAMCS_2014_24_4_a3
Zeng, C.; Liang, S.; Zhang, Y.; Zhong, J.; Su, Y. Improving the stability of discretization zeros with the Taylor method using a generalization of the fractional-order hold. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 4, pp. 745-757. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a3/
[1] Åström, K.J., Hagander, P. and Sternby, J. (1984). Zeros of sampled systems, Automatica 20(1): 31–38.
[2] Bàrcena, R., de la Sen, M. and Sagastabeitia, I. (2000). Improving the stability properties of the zeros of sampled systems with fractional order hold, IEE Proceedings: Control Theory and Applications 147(4): 456–464.
[3] Bàrcena, R., de la Sen, M., Sagastabeitia, I. and Collantes, J.M. (2001). Discrete control for a computer hard disk by using a fractional order hold device, IEE Proceedings: Control Theory and Applications 148(2): 117–124.
[4] Błachuta, M.J. (1998). On zeros of pulse transfer functions of systems with first-order hold, Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, USA, Vol. 1, pp. 307–312.
[5] Błachuta, M.J. (1999). On zeros of pulse transfer functions, IEEE Transactions on Automatic Control 44(6): 1229–1234.
[6] Błachuta, M.J. (2001). On fast sampling zeros of systems with fractional-order hold, Proceedings of the 2001 American Control Conference, Arlington, VA, USA, Vol. 4, pp. 3229–3230.
[7] Chan, J.T. (1998). On the stabilization of discrete system zeros, International Journal of Control 69(6): 789–796.
[8] Chan, J.T. (2002). Stabilization of discrete system zeros: An improved design, International Journal of Control 75(10): 759–765.
[9] Feuer, A. and Goodwin, G. (1996). Sampling in Digital Signal Processing and Control, Birkhauser, Boston, MA.
[10] Filatov, N.M., Keuchel, U. and Unbehauen, H. (1996). Dual control for an unstable mechanical plant, IEEE Control Systems Magazine 16(4): 31–37.
[11] Hagiwara, T. (1996). Analytic study on the intrinsic zeros of sampled-data system, IEEE Transactions on Automatic Control 41(2): 261–263.
[12] Hagiwara, T., Yuasa, T. and Araki, M. (1992). Limiting properties of the zeros of sampled-data systems with zero and first-order holds, Proceeding of the 31st Conference on Decision and Control, Tucson, AZ, USA, pp. 1949–1954.
[13] Hagiwara, T., Yuasa, T. and Araki, M. (1993). Stability of the limiting zeros of sampled-data systems with zero and first-order holds, International Journal of Control 58(6): 1325–1346.
[14] Hayakawa, Y., Hosoe, S. and Ito, M. (1983). On the limiting zeros of sampled multivariable systems, Systems and Control Letters 2(5): 292–300.
[15] Ishitobi, M. (1996). Stability of zeros of sampled system with fractional order hold, IEE Proceedings: Control Theory and Applications 143(2): 296–300.
[16] Ishitobi, M. (2000). A stability condition of zeros of sampled multivariable systems, IEEE Transactions on Automatic Control AC-45(2): 295–299.
[17] Ishitobi, M., Nishi, M. and Kunimatsu, S. (2013). Asymptotic properties and stability criteria of zeros of sampled-data models for decouplable MIMO systems, IEEE Transactions on Automatic Control 58(11): 2985–2990.
[18] Isidori, A. (1995). Nonlinear Control Systems: An Introduction, Springer Verlag, New York, NY.
[19] Kabamba, P.T. (1987). Control of linear systems using generalized sampled-data hold functions, IEEE Transactions on Automatic Control AC-32(7): 772–783.
[20] Kaczorek, T. (1987). Stability of periodically switched linear systems and the switching frequency, International Journal of System Science 18(4): 697–726.
[21] Kaczorek, T. (2010). Decoupling zeros of positive discrete-time linear systems, Circuits and Systems 1: 41–48.
[22] Kaczorek, T. (2013). Application of the Drazin inverse to the analysis of descriptor fractional discrete-time linear systems with regular pencils, International Journal of Applied Mathematics and Computer Science 23(1): 29–33, DOI: 10.2478/amcs-2013-0003.
[23] Karampetakis, N.P. and Karamichalis, R. (2014). Discretization of singular systems and error estimation, International Journal of Applied Mathematics and Computer Science 24(1): 65–73, DOI: 10.2478/amcs-2014-0005.
[24] Khalil, H. (2002). Nonlinear Systems, Prentice-Hall, London.
[25] Liang, S. and Ishitobi, M. (2004a). Properties of zeros of discretised system using multirate input and hold, IEE Proceedings: Control Theory and Applications 151(2): 180–184.
[26] Liang, S. and Ishitobi, M. (2004b). The stability properties of the zeros of sampled models for time delay systems in fractional order hold case, Dynamics of Continuous, Discrete and Impulsive Systems, B: Applications and Algorithms 11(3): 299–312.
[27] Liang, S., Ishitobi, M., Shi,W. and Xian, X. (2007). On stability of the limiting zeros of discrete-time MIMO systems, ACTA Automatica SINICA 33(4): 439–441, (in Chinese).
[28] Liang, S., Ishitobi, M. and Zhu, Q. (2003). Improvement of stability of zeros in discrete-time multivariable systems using fractional-order hold, International Journal of Control 76(17): 1699–1711.
[29] Liang, S., Xian, X., Ishitobi, M. and Xie, K. (2010). Stability of zeros of discrete-time multivariable systems with GSHF, International Journal of Innovative Computing, Information and Control 6(7): 2917–2926.
[30] Middleton, R. and Freudenberg, J. (1995). Non-pathological sampling for generalized sampled-data hold functions, Automatica 31(2): 315–319.
[31] Ostalczyk, P. (2012). Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains, International Journal of Applied Mathematics and Computer Science 22(3): 533–538, DOI: 10.2478/v10006-012-0040-7.
[32] Passino, K.M. and Antsaklis, P.J. (1988). Inverse stable sampled low-pass systems, International Journal of Control 47(6): 1905–1913.
[33] Ruzbehani, M. (2010). A new tracking controller for discrete-time SISO non minimum phase systems, Asian Journal of Control 12(1): 89–95.
[34] Tokarzewski, J. (2009). Zeros of Linear Systems, Springer, Berlin.
[35] Ugalde, U., Bàrcena, R. and Basterretxea, K. (2012). Generalized sampled-data hold functions with asymptotic zero-order hold behavior and polynomic reconstruction, Automatica 48(6): 1171–1176.
[36] Weller, S.R. (1999). Limiting zeros of decouplable MIMO systems, IEEE Transactions on Automatic Control 44(1): 292–300.
[37] Weller, S.R., Moran, W., Ninness, B. and Pollington, A.D. (2001). Sampling zeros and the Euler–Frobenius polynomials, IEEE Transactions on Automatic Control 46(2): 340–343.
[38] Yuz, J.I., Goodwin, G.C. and Garnier, H. (2004). Generalized hold functions for fast sampling rates, 43rd IEEE Conference on Decision and Control (CDC’2004), Atlantis, The Bahamas, Vol. 46, pp. 761–765.
[39] Zeng, C., Liang, S., Li, H. and Su, Y. (2013). Current development and future challenges for zero dynamics of discrete-time systems, Control Theory Applications 30(10): 1213–1230, (in Chinese).
[40] Zhang, Y., Kostyukova, O. and Chong, K.T. (2011). A new time-discretization for delay multiple-input nonlinear systems using the Taylor method and first order hold, Discrete Applied Mathematics 159(9): 924–938.