Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_4_a11, author = {Zduniak, B. and Bodnar, M. and Fory\'s, U.}, title = {A modified van der {Pol} equation with delay in a description of the heart action}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {853--863}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a11/} }
TY - JOUR AU - Zduniak, B. AU - Bodnar, M. AU - Foryś, U. TI - A modified van der Pol equation with delay in a description of the heart action JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 853 EP - 863 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a11/ LA - en ID - IJAMCS_2014_24_4_a11 ER -
%0 Journal Article %A Zduniak, B. %A Bodnar, M. %A Foryś, U. %T A modified van der Pol equation with delay in a description of the heart action %J International Journal of Applied Mathematics and Computer Science %D 2014 %P 853-863 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a11/ %G en %F IJAMCS_2014_24_4_a11
Zduniak, B.; Bodnar, M.; Foryś, U. A modified van der Pol equation with delay in a description of the heart action. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 4, pp. 853-863. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_4_a11/
[1] Atay, F. (1998). Van der Pol’s oscillator under delayed feedback, Journal of Sound and Vibration 218(2): 333–339.
[2] Bielczyk, N., Bodnar, M. and Foryś, U. (2012). Delay can stabilize: Love affairs dynamics, Applied Mathematics and Computation 219(2): 3923–3937.
[3] Cooke, K. and van den Driessche, P. (1986). On zeroes of some transcendental equations, Funkcialaj Ekvacioj 29(2): 77–90.
[4] Erneux, T. and Grasman, J. (2008). Limit cycle oscillators subject to a delayed feedback, Physical Review E 78(2): 026209–1–8.
[5] Foryś, U. (2004). Biological delay systems and the Mikhailov criterion of stability, Journal of Biological Systems 12(1): 45–60.
[6] Giacomin, H. and Neukirch, S. (1997). Number of limit cycles of the Lienard equation, Physical Review E 56(3809): 3809–3813.
[7] Grudziński, K. (2007). Modeling the Electrical Activity of the Heart Conduction, Ph.D. thesis, Warsaw University of Technology, Warsaw.
[8] Hale, J. and Lunel, S. (1993). Introduction to Functional Differential Equations, Springer-Verlag, New York, NY.
[9] Jiang, W. and Wei, J. (2008). Bifurcation analysis in van der Pol’s oscillator with delayed feedback, Journal of Computational and Applied Mathematics 213(2): 604–615.
[10] Johnson, L. (1997). Essential Medical Physiology, Lippincott Williams and Wilkins, London.
[11] Kaplan, D. and Glass, L. (1995). Understanding Nonlinear Dynamics, Springer, New York, NY.
[12] Liu, Y., Yang, R., Lu. J. and Cai, X. (2013). Stability analysis of high-order Hopfield-type neural networks based on a new impulsive differential inequality, International Journal of Applied Mathematics and Computer Science 23(1): 201–211, DOI: 10.2478/amcs-2013-0016.
[13] Maccari, A. (2001). The response of a parametrically excited van der Pol oscillator to a time delay state feedback, Nonlinear Dynamics 26(2): 105–119.
[14] Palit, A. and Datta, D.P. (2010). On a finite number of limit cycles in a Lienard system, International Journal of Pure and Applied Mathematics 59: 469–488.
[15] Reddy, R.D., Sen, A. and Johnston, G. (2000). Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators, Physical Review Letters 85(3381): 3381–3384.
[16] Xu, J. and Chung, K. (2003). Effects of time delayed position feedback on a van der Pol–Duffing oscillator, Physica D 180(1): 17–39.
[17] Yu, W. and Cao, J. (2005). Hopf bifurcation and stability of periodic solutions for van der Pol equation with time delay, Nonlinear Analysis 62: 141–165.
[18] Żebrowski, J., Kuklik, P. and Baranowski, R. (2008). Relaxation oscillations in the atrium—a model, Proceedings of the 5th Conference of the European Study Group on Cardiovascular Oscillations, Parma, Italy, pp. 04:16–04:19.
[19] Zhou, X., Jiang, M. and Cai, X. (2011). Hopf bifurcation analysis for the van der Pol equation with discrete and distributed delays, Discrete Dynamics in Nature and Society, 2011: 1–8, Article ID: 569141.