Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_3_a3, author = {Zeifman, A. and Satin, Y. and Korolev, V. and Shorgin, S.}, title = {On truncations for weakly ergodic inhomogeneous birth and death processes}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {503--518}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a3/} }
TY - JOUR AU - Zeifman, A. AU - Satin, Y. AU - Korolev, V. AU - Shorgin, S. TI - On truncations for weakly ergodic inhomogeneous birth and death processes JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 503 EP - 518 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a3/ LA - en ID - IJAMCS_2014_24_3_a3 ER -
%0 Journal Article %A Zeifman, A. %A Satin, Y. %A Korolev, V. %A Shorgin, S. %T On truncations for weakly ergodic inhomogeneous birth and death processes %J International Journal of Applied Mathematics and Computer Science %D 2014 %P 503-518 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a3/ %G en %F IJAMCS_2014_24_3_a3
Zeifman, A.; Satin, Y.; Korolev, V.; Shorgin, S. On truncations for weakly ergodic inhomogeneous birth and death processes. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 3, pp. 503-518. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a3/
[1] Daleckij, J.L. and Krein, M.G. (1974). Stability of Solutions of Differential Equations in Banach Space, American Mathematical Society, Providence, RI.
[2] Di Crescenzo, A., Giorno, V., Kumar, B.K. and Nobile, A.G. (2012). A double-ended queue with catastrophes and repairs, and a jump-diffusion approximation, Methodology and Computing in Applied Probability 14(4): 937–954, DOI:10.1007/s11009-011-9214-2.
[3] Di Crescenzo, A., Giorno, V., Nobile, A.G. and Ricciardi, L.M. (2003). On the M/M/1 queue with catastrophes and its continuous approximation, Queueing Systems 43(4): 329–347, DOI:10.1023/A:1023261830362.
[4] Di Crescenzo, A. and Nobile, A.G. (1995). Diffusion approximation to a queueing system with time dependent arrival and service rates, Queueing systems 19(1): 41–62, DOI:10.1007/BF01148939.
[5] Granovsky, B. and Zeifman, A. (2004). Nonstationary queues: Estimation of the rate of convergence, Queueing Systems 46(3): 369–388, DOI:10.1023/B:QUES.0000027991.19758.b4.
[6] Knessl, C. (2000). Exact and asymptotic solutions to a PDE that arises in time-dependent queues, Advances in Applied Probability 32(1): 256–283.
[7] Knessl, C. and Yang, Y.P. (2002). An exact solution for an M(t)/M(t)/1 queue with time-dependent arrivals and service, Advances in Applied Probability 40(3): 233–248, DOI:10.1023/A:1014786928831.
[8] Mandelbaum, A. and Massey,W. (1995). Strong approximations for time-dependent queues, Mathematics of Operations Research 20(1): 33–64, DOI:10.1287/moor.20.1.33.
[9] Margolius, B. (2007a). Periodic solution to the time-inhomogeneous multi-server Poisson queue, Operations Research Letters 35(1): 125–138, DOI:10.1016/j.orl.2005.12.008.
[10] Margolius, B. (2007b). Transient and periodic solution to the time-inhomogeneous quasi-birth death process, Queueing Systems 56(3): 183–194, DOI:10.1007/s11134-007-9027-8.
[11] Massey, W. (2002). The analysis of queues with time-varying rates for telecommunication models, Telecommunication Systems 21(2): 173–204, DOI:10.1023/A:1020990313587.
[12] Massey, W. and Pender, J. (2013). Gaussian skewness approximation for dynamic rate multi-server queues with abandonment, Queueing Systems 75(2): 243–277.
[13] Massey, W. and Whitt, W. (1994). On analysis of the modified offered-load approximation for the nonstationary Erlang loss model, Annals of Applied Probability 4(4): 1145–1160, DOI:10.1214/aoap/1177004908.
[14] Olwal, T.O., Djouani, K., Kogeda, O.P. and van Wyk, B.J.V (2012). Joint queue-perturbed and weakly coupled power control for wireless backbone networks, International Journal of Applied Mathematics and Computer Science 22(3): 749–764, DOI: 10.2478/v10006-012-0056-z.
[15] Tan, X., Knessl, C. and Yang, Y.P. (2013). On finite capacity queues with time dependent arrival rates, Stochastic Processes and their Applications 123(6): 2175–2227, DOI:10.1016/j.spa.2013.02.002.
[16] Van Doorn, E.A., Zeifman, A.I. and Panfilova, T.L. (2010). Bounds and asymptotics for the rate of convergence of birth-death processes, Theory of Probability and Its Applications 54(1): 97–113, DOI:10.1137/S0040585X97984097.
[17] Zeifman, A. (1995a). Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes, Stochastic Processes and Their Applications 59(1): 157–173, DOI:10.1016/0304-4149(95)00028-6.
[18] Zeifman, A.I. (1985). Stability for continuous-time nonhomogeneous Markov chains, in V.V. Kalashnikov and V.M. Zolotarev (Eds.), Stability Problems for Stochastic Models, Lecture Notes in Mathematics, Vol. 1155, Springer, Berlin/Heidelberg, pp. 401–414, DOI:10.1007/BFb0074830.
[19] Zeifman, A.I. (1988). Truncation error in a birth and death system, USSR Computational Mathematics and Mathematical Physics 28(6): 210–211, DOI:10.1016/0041-5553(88)90068-7.
[20] Zeifman, A.I. (1995b). On the estimation of probabilities for birth and death processes, Journal of Applied Probability 32(3): 623–634.
[21] Zeifman, A., Korolev, V., Satin, Y., Korotysheva, A. and Bening, V. (2014). Perturbation bounds and truncations for a class of Markovian queues, Queueing Systems 76(2): 205–221, DOI:10.1007/s11134-013-9388-0.
[22] Zeifman, A. and Korotysheva, A. (2012). Perturbation bounds forMt/Mt/N queue with catastrophes, Stochastic Models 281(1): 49–62, DOI:10.1080/15326349.2011.614900.
[23] Zeifman, A., Leorato, S., Orsingher, E., Satin, Y. and Shilova, G. (2006). Some universal limits for nonhomogeneous birth and death processes, Queueing Systems 52(2): 139–151, DOI:10.1007/s11134-006-4353-9.
[24] Zeifman, A., Satin, Y. and Panfilova, T. (2013a). Limiting characteristics for finite birth-death-catastrophe processes, Mathematical Biosciences 245(1): 96–102, DOI:10.1016/j.mbs.2013.02.009.
[25] Zeifman, A., Satin, Y., Shilova, G., Korolev, V., Bening, V. and Shorgin, S. (2013b). On Mt/Mt/S type queue with group services, Proceedings of the 27th European Conference on Modeling and Simulation, Aalesund, Norway, pp. 604–609.
[26] Zhang, J. and Coyle, E.J.J. (1991). The transient solution of time-dependent M/M/L queues, IEEE Transactions on Information Theory 37(6): 1690–1696, DOI:10.1109/18.104335.