Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_3_a16, author = {Vuka\v{s}inovi\'c, V. and \v{S}ilc, J. and \v{S}krekovski, R.}, title = {Modeling acquaintance networks based on balance theory}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {683--696}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a16/} }
TY - JOUR AU - Vukašinović, V. AU - Šilc, J. AU - Škrekovski, R. TI - Modeling acquaintance networks based on balance theory JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 683 EP - 696 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a16/ LA - en ID - IJAMCS_2014_24_3_a16 ER -
%0 Journal Article %A Vukašinović, V. %A Šilc, J. %A Škrekovski, R. %T Modeling acquaintance networks based on balance theory %J International Journal of Applied Mathematics and Computer Science %D 2014 %P 683-696 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a16/ %G en %F IJAMCS_2014_24_3_a16
Vukašinović, V.; Šilc, J.; Škrekovski, R. Modeling acquaintance networks based on balance theory. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 3, pp. 683-696. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a16/
[1] Antal, T., Krapivsky, P.L. and Redner, S. (2005). Dynamics of social balance on networks, Physical Review E 72(3): 036121.
[2] Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks, Science 286(5439): 509–512.
[3] Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Théraulaz, G. and Bonabeau, E. (2001). Self-Organization in Biological Systems, Princeton University Press, Princeton, NJ.
[4] Davidsen, J., Ebel, H. and Bornholdt, S. (2002). Emergence of a small world from local interactions: Modeling acquaintance networks, Physical Review Letters 88(12): 128701.
[5] de Sola Pool, I. and Kochen, M. (1978). Contacts and influence, Social Networks 1(1): 5–58.
[6] Dorigo, M., Bonabeau, E. and Th´eraulaz, G. (2000). Ant algorithms and stigmergy, Future Generation Computer Systems 16(9): 851–871.
[7] Dorigo, M., Maniezzo, V. and Colorni, A. (1996). The ant system: Optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics B 26(1): 29–41.
[8] Erdös, P. and Rényi, A. (1960). On the evolution of random graphs, Publications of the Mathematical Institute of the Hungarian Academy of Sciences 5(1–2): 17–61.
[9] Freeman, L.C. (2004). The Development of Social Network Analysis: A Study in the Sociology of Science, Empirical Press, Vancouver, BC.
[10] Granovetter, M.S. (1973). The strength of weak ties, American Journal of Sociology 78(6): 1360–1380.
[11] Grassé, P.-P. (1959). La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs, Insectes Sociaux 6(1): 41–81.
[12] Grossetti, M. (2005). Where do social relations come from? A study of personal networks in the Toulouse area of France, Social Networks 27(4): 289–301.
[13] Guimerà, R., Danon, L., Diaz-Guilera, A., Giralt, F. and Arenas, A. (2003). Self-similar community structure in a network of human interactions, Physical Review E 68(6): 065103(R).
[14] Handl, J., Knowles, J. and Dorigo, M. (2006). Ant based clustering and topographic mapping, Artificial Life 12(1): 35–61.
[15] Heider, F. (1946). Attitudes and cognitive organization, Journal of Psychology 21(1): 107–112.
[16] Jiang, J., Wang, R. and Wang, Q.A. (2011). Network model of deviation from power-law distribution in complex network, The European Physical Journal B 79(1): 29–33.
[17] Korošec P. (2006). Stigmergy as an Approach to Metaheuristic Optimization, Ph.D. thesis, Jožef Stefan International Postgraduate School, Ljubljana.
[18] Korošec, P., Šilc, J. and Filipič, B. (2012). The differential ant-stigmergy algorithm, Information Sciences 192(1): 82–97.
[19] Kumpula, J.M., Onnela, J., Saramäki, J., Kaski, K. And Kertesz, J. (2007). Emergence of communities in weighted networks, Physical Review Letters 99(22): 228701.
[20] Kleinberg, J.M. (2000). The small-world phenomenon: An algorithmic perspective, Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, Portland, OR, USA, pp. 163–173.
[21] Leskovec, J. (2010). Kronecker graphs: An approach to modeling networks, Journal of Machine Learning Research 11: 985–1042.
[22] Ludwig, M. and Abell, P. (2007). An evolutionary model of social networks, European Physical Journal B 58(1): 97–105.
[23] Marsili, M., Vega-Redondo, F. and Slanina, F. (2004). The rise and fall of a networked society: A formal model, Proceedings of the National Academy of Sciences of the United mStates of America 101(6): 1439–1442.
[24] Martens, D., De Backer, M., Haesen, R., Vanthienen, J., Snoeck, M. and Baesens, B. (2007). Classification with ant colony optimization, IEEE Transactions on Evolutionary Computation 11(5): 651–665.
[25] Marvel, S.A., Kleinberg, J., Kleinberg, R.D., and Strogatz, S.H. (2011). Continuous-time model of structural balance, Proceedings of the National Academy of Sciences of the United States of America 108(5):1771–1776.
[26] Milgram, S. (1967). The small world problem, Psychology Today 1(1): 61–67.
[27] Newman,M.E.J. (2001). The structure of scientific collaboration networks, Proceedings of the National Academy of Sciences of the United States of America 98(2): 404–409.
[28] Newman, M.E.J. (2008). Mathematics of Networks, Palgrave Macmillan, Basingstoke.
[29] Péter, T. (2012). Modeling nonlinear road traffic networks for junction control, International Journal of Applied Mathematics and Computer Science 22(3): 723–732, DOI: 10.2478/v10006-012-0054-1.
[30] Pons, P. and Latapy,M. (2005). Computing communities in large networks using random walks, arXiv:physics/0512106v1.
[31] Rand, W.M. (1971). Objective criteria for the evaluation of clustering methods, Journal of the American Statistical Association 66(336): 846–850.
[32] Rapoport, A. (1957). Contribution to the theory of random and biased nets, Bulletin of Mathematical Biology 19(4): 257–277.
[33] Srinivasan, A. (2011). Local balancing influences global structure in social networks, Proceedings of the National Academy of Sciences of the United States of America 108(5): 1751–1752.
[34] Toivonen, R., Kovanen, L., Kivelä, M., Onnela, J., Saramäki, J. and Kaski, K. (2009). A comparative study of social network models: Network evolution models and nodal attribute models, Social Networks 31(4): 240–254.
[35] Vukašinović, V., Šilc, J. and Škrekovski, R. (2012a). Towards social networks model, Proceedings of the 5th International Conference on Bioinspired Optimization Methods and Their Applications, Bohinj, Slovenia, pp. 49–60.
[36] Vukašinović, V., Šilc, J. and Škrekovski, R. (2012b). Swarm-inspired social network model and its properties, Proceedings of the 4th International Conference on Information Technologies and Information Society, Novo Mesto, Slovenia.
[37] Wang, W., Hu, B., Zhou, T., Wang, B. and Xie, Y. (2005). Mutual selection model for weighted networks, Physical Review E 72(4): 046140.
[38] Watts, D.J. (1999). Small Worlds: The Dynamics of Networks Between Order and Randomness, Princeton University Press, Princeton, NJ.
[39] Watts, D.J. and Strogatz, S.H. (1998). Collective dynamics of ‘small-world’ networks, Nature 393(6684): 440–442.
[40] White, D.R., Kejzar, N., Tsallis, C., Farmer, D. and White, S. (2006). A generative model for feedback networks, Physical Review E 73(1): 016119.
[41] Wynne, C.D.L. (2001). Animal Cognition: The Mental Lives of Animals, Palgrave Macmillan, Basingstoke.
[42] Xiong, F., Liu, Y., Zhu, J., Zhang, Z.J., Zhang, Y.C. and Zhang, Y. (2011). A dissipative network model with neighboring activation, The European Physical Journal B 84(1): 115–120.