Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_3_a14, author = {Muszy\'nski, M. and Osowski, S.}, title = {Data mining methods for gene selection on the basis of gene expression arrays}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {657--668}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a14/} }
TY - JOUR AU - Muszyński, M. AU - Osowski, S. TI - Data mining methods for gene selection on the basis of gene expression arrays JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 657 EP - 668 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a14/ LA - en ID - IJAMCS_2014_24_3_a14 ER -
%0 Journal Article %A Muszyński, M. %A Osowski, S. %T Data mining methods for gene selection on the basis of gene expression arrays %J International Journal of Applied Mathematics and Computer Science %D 2014 %P 657-668 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a14/ %G en %F IJAMCS_2014_24_3_a14
Muszyński, M.; Osowski, S. Data mining methods for gene selection on the basis of gene expression arrays. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 3, pp. 657-668. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a14/
[1] Baldi, P. and Long, A. (2001). A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inference of gene changes, Bioinformatics 17(4): 509–519.
[2] Chang, C.-C. and Lin, C.-J. (2011). LibSVM: A library for support vector machines, ACM Transactions on Intelligent Systems and Technology 1(27): 1–27.
[3] De Rinaldis, E. (2007). DNA Microarrays: Current Applications, Horizon Scientific Press, Norfolk.
[4] Duda, R., Hart, P. and Stork, P. (2003). Pattern Classification and Scene Analysis, John Wiley, New York, NY.
[5] Eisen, M., Spellman, P. and Brown, P. (1998). Cluster analysis and display of genome wide expression patterns, Proceedings of the National Academy of Sciences 95(25): 14863–14868.
[6] Fan, R.-E., Chen, P.-H. and Lin, C.-J. (2005). Working set selection using second order information for training SVM, Journal of Machine Learning Research 6(12): 1889–1918.
[7] Furey, T., Cristianini, N., Duffy, N., Bednarski, D., Schummer, M. and Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data, Bioinformatics 16(10): 906–914.
[8] Golub, T., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A. and Bloomfield, C.D. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, Science 286(5439): 531–537.
[9] Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection, Journal of Machine Learning Research 3(3): 1158–1182.
[10] Guyon, I., Weston, A., Barnhill, S. and Vapnik, V. (2002). Gene selection for cancer classification using SVM, Machine Learning 46(1–3): 389–422.
[11] Haykin, S. (1999). Neural Networks. A Comprehensive Foundation, 2nd Edition, Prentice-Hall, Englewood Cliffs, NJ.
[12] Herrero, J., Valencia, A. and Dopazon, A. (2001). A hierarchical unsupervised growing neural network for clustering gene expression patterns, Bioinformatics 17(2): 126–136.
[13] Hewett, R. and Kijsanayothin, P. (2008). Tumor classification ranking from microarray data, BMC Genomics 9(2): 1–11.
[14] Huang, T.M. and Kecman, V. (2005). Gene extraction for cancer diagnosis by support vector machines—an improvement, Artificial Intelligence in Medicine 9(35): 185–194.
[15] Huang, X. and Pan, W. (2003). Linear regression and two-class classification with gene expression data, Bioinformatics 19(16): 2072–2078.
[16] Makinaci, M. (2007). Support vector machine approach for classification of cancerous prostate regions, World Academy of Science, Engineering and Technology 1(7): 166–169.
[17] Matlab (2012). Matlab User Manual—Statistics Toolbox, MathWorks, Natic.
[18] Mitsubayashi, H., Aso, S., Nagashima, T. and Okada, Y. (2008). Accurate and robust gene selection for desease classification using a simple statistics, Biomedical Informatics 3(2): 68–71.
[19] Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C., Angelo, M., Ladd, C., Reich, M., Latulippe, E., Mesirov, J., Poggio, T., Gerald, W., Loda, M., Lander, E. and Golub, T. (2001). Multiclass cancer diagnosis using tumor gene expression signatures, Proceedings of the National Academy of Sciences 98(26): 15149–15154.
[20] Sabo, K. (2014). Center-based l1-clustering method, International Journal of Applied Mathematics and Computer Science 24(1): 151–163, DOI: 10.2478/amcs-2014-0012.
[21] Scholkopf, B. and Smola, A. (2002). Learning with Kernels, MIT Press, Cambridge, MA.
[22] Sprent, P. and Smeeton, N. (2007). Applied Nonparametric Statistical Methods, Chapman and Hall-CRC, Boca Raton, FL.
[23] Świniarski, R.W. (2001). Rough sets methods in feature reduction and classification, International Journal of Applied Mathematics and Computer Science 11(3): 565–582.
[24] Tan, P.N., Steinbach, M. and Kumar, V. (2006). Introduction to Data Mining, Pearson Education, Boston, MA.
[25] Vanderbilt (2002). Data base of prostate cancer, Vanderbilt University, http://discover1.mc.vanderbilt.edu/discover/public/mcsvm.
[26] Vert, J. (2007). Kernel methods in genomics and computational biology, in G. Camps-Valls, J.L. Rojo-Alvarez and M. Martinez-Ramon (Eds.), Kernel Methods in Bioengineering, Signal and Image Processing, Idea Group, London, pp. 42–64.
[27] Wang, X. and Gotoh, O. (2009). Cancer classification using single genes, Genom Informatics 23(1): 179–188.
[28] Wang, X. and Gotoh, O. (2010). A robust gene selection method for microarray-based cancer classification, Cancer Informatics 9(2): 15–30.
[29] Wiliński, A. and Osowski, S. (2012). Ensemble of data mining methods for gene ranking, Bulletin of the Polish Academy of Sciences 60(3): 461–471.
[30] Woolf, P.J. and Wang, Y. (2000). A fuzzy logic approach to analyzing gene expression data, Physiological Genomics 3(1): 9–15.
[31] Yang, F. (2011). Robust feature selection for microarray data based on multicriterion fusion, IEEE Transactions on Computational Biology and Bioinformatics 8(4): 1080–1092.