Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_3_a12, author = {Ding, D. and Ma, Q. and Ding, X.}, title = {An unconditionally positive and global stability preserving {NSFD} scheme for an epidemic model with vaccination}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {635--646}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a12/} }
TY - JOUR AU - Ding, D. AU - Ma, Q. AU - Ding, X. TI - An unconditionally positive and global stability preserving NSFD scheme for an epidemic model with vaccination JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 635 EP - 646 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a12/ LA - en ID - IJAMCS_2014_24_3_a12 ER -
%0 Journal Article %A Ding, D. %A Ma, Q. %A Ding, X. %T An unconditionally positive and global stability preserving NSFD scheme for an epidemic model with vaccination %J International Journal of Applied Mathematics and Computer Science %D 2014 %P 635-646 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a12/ %G en %F IJAMCS_2014_24_3_a12
Ding, D.; Ma, Q.; Ding, X. An unconditionally positive and global stability preserving NSFD scheme for an epidemic model with vaccination. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 3, pp. 635-646. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a12/
[1] Alexander, M.E., Summers, A.R. and Moghadas, S.M. (2006). Neimark–Sacker bifurcations in a non-standard numerical scheme for a class of positivity-preserving ODEs, Proceedings of the Royal Society, A: Mathematical, Physical and Engineering Sciences 462(2074): 3167–3184.
[2] Anderson, R. and May, R. (1991). Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford/New York, NY.
[3] Anguelo, V.R. and Lubuma, J. (2003). Nonstandard finite difference method by nonlocal approximation, Mathematics and Computers in Simulation 61(3): 465–475.
[4] Arenas, A., Moraño, J. and Cortés, J. (2008). Non-standard numerical method for a mathematical model of RSV epidemiological transmission, Computers and Mathematics with Applications 56(3): 670–678.
[5] Bruggeman, J., Burchard, H., Kooi, B.W. and Sommeijer, B. (2007). A second-order, unconditionally positive, mass-conserving integration scheme for biochemical systems, Applied Numerical Mathematics 57(1): 36–58.
[6] Chen, M. and Clemence, D. (2006). Stability properties of a nonstandard finite difference scheme for a hantavirus epidemic model, Journal of Difference Equations and Applications 12(12): 1243–1256.
[7] Chinviriyasit, S. and Chinviriyasit, W. (2010). Numerical modelling of an SIR epidemic model with diffusion, Applied Mathematics and Computation 216(2): 395–409.
[8] Dimitrov, D.T. and Kojouharov, H. (2005). Nonstandard finite-difference schemes for general two-dimensional autonomous dynamical systems, Applied Mathematics Letters 18(7): 769–774.
[9] Dimitrov, D. and Kojouharov, H. (2007). Stability-preserving finite-difference methods for general multi-dimensional autonomous dynamical systems, International Journal of Numerical Analysis and Modeling 4(2): 280–290.
[10] Dimitrov, D. and Kojouharov, H. (2008). Nonstandard finite difference methods for predator-prey models with general functional response, Mathematics and Computers in Simulation 78(1): 1–11.
[11] Ding, D., Ma, Q. and Ding, X. (2013). A non-standard finite difference scheme for an epidemic model with vaccination, Journal of Difference Equations and Applications 19(2): 179–190.
[12] Dumont, Y. and Lubuma, J.M.-S. (2005). Non-standard finite-difference methods for vibro-impact problems, Proceedings of the Royal Society, A: Mathematical, Physical and Engineering Sciences 461(2058): 1927–1950.
[13] Enatsu, Y., Nakata, Y. and Muroya, Y. (2010). Global stability for a class of discrete SIR epidemic models, Mathematical Biosciences and Engineering 7: 347–361.
[14] Enszer, J.A. and Stadtherr, M.A. (2009). Verified solution method for population epidemiology models with uncertainty, International Journal of Applied Mathematics and Computer Science 19(3): 501–512, DOI: 10.2478/v10006-009-0040-4.
[15] Gumel, A. (2002). A competitive numerical method for a chemotherapy model of two HIV subtypes, Applied Mathematics and Computation 131(2): 329–337.
[16] Hildebrand, F. (1968). Finite Difference Equations and Simulations, Prentice-Hall, Englewood Cliffs, NJ.
[17] Jódar, L., Villanueva, R., Arenas, A. and González, G. (2008). Nonstandard numerical methods for a mathematical model for influenza disease, Mathematics and Computers in Simulation 79(3): 622–633.
[18] Jang, S. (2007). On a discrete west Nile epidemic model, Computational and Applied Mathematics 26(3): 397–414.
[19] Jang, S. and Elaydi, S. (2003). Difference equations from discretization of a continuous epidemic model with immigration of infectives, Canadian Applied Mathematics Quarterly 11(1): 93–105.
[20] Jansen, H. and Twizell, E. (2002). An unconditionally convergent discretization of the SEIR model, Mathematics and Computers in Simulation 58(2): 147–158.
[21] Kouche, M. and Ainseba, B. (2010). A mathematical model of HIV-1 infection including the saturation effect of healthy cell proliferation, International Journal of Applied Mathematics and Computer Science 20(3): 601–612, DOI: 10.2478/v10006-010-0045-z.
[22] Lambert, J. (1973). Computational Methods in Ordinary Differential Equations, Wiley, New York, NY.
[23] Ma, Z., Zhou, Y., Wang, W. and Jing, Z. (2004). The Mathematical Modeling and Study of the Dynamics of Infectious Diseases, Science Press, Beijing.
[24] Mickens, R. (1994). Nonstandard Finite Difference Models of Differential Equations, World Scientific, Singapore.
[25] Mickens, R. (2000). Advances in the Applications of Nonstandard Finite Difference Schemes, World Scientific, Singapore.
[26] Mickens, R. (2002). Nonstandard finite difference schemes for differential equations, Journal of Difference Equations and Applications 8(9): 823–847.
[27] Mickens, R. (2005). Dynamic consistency: A fundamental principle for constructing nonstandard finite difference schemes for differential equations, Journal of Difference Equations and Applications 11(7): 645–653.
[28] Moghadas, S., Alexander, M. and Corbett, B.D.and Gumel, A. (2003). A positivity preserving Mickens-type discretization of an epidemic model, Journal of Difference Equations and Applications 9(11): 1037–1051.
[29] Moghadas, S. and Gumel, A. (2003). A mathematical study of a model for childhood diseases with non-permanent immunity, Journal of Computational and Applied Mathematics 157(2): 347–363.
[30] Muroya, Y., Nakata, Y., Izzo, G. and Vecchio, A. (2011). Permanence and global stability of a class of discrete epidemic models, Nonlinear Analysis: Real World Applications 12(4): 2105–2117.
[31] Obaid, H., Ouifki, R. and Patidar, K.C. (2013). An unconditionally stable nonstandard finite difference method applied to a mathematical model of HIV infection, International Journal of Applied Mathematics and Computer Science 23(2): 357–372, DOI: 10.2478/amcs-2013-0027.
[32] Oran, E. and Boris, J. (1987). Numerical Simulation of Reactive Flow, Elsevier, New York, NY.
[33] Parra, G.G., Arenas, A. and Charpentier, B.C. (2010). Combination of nonstandard schemes and Richardson’s extrapolation to improve the numerical solution of population models, Mathematical and Computer Modelling 52(7): 1030–1036.
[34] Potter, D. (1973). Computational Physics, Wiley-Interscience, New York, NY.
[35] Sekiguchi, M. (2009). Permanence of some discrete epidemic models, International Journal of Biomathematics 2(4): 443–461.
[36] Sekiguchi, M. (2010). Permanence of a discrete SIRS epidemic model with time delays, Applied Mathematics Letters 23(10): 1280–1285.
[37] Sekiguchi, M. and Ishiwata, E. (2010). Global dynamics of a discretized SIRS epidemic model with time delay, Journal of Mathematical Analysis and Applications 371(1): 195–202.
[38] Stuart, A. and Humphries, A. (1996). Dynamic System and Numerical Analysis, Cambridge University Press, Cambridge.
[39] Sundarapandian, V. (2003). An invariance principle for discrete-time nonlinear systems, Applied Mathematics Letters 16(1): 85–91.