Fitting traffic traces with discrete canonical phase type distributions and Markov arrival processes
International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 3, pp. 453-470.

Voir la notice de l'article provenant de la source Library of Science

Recent developments of matrix analytic methods make phase type distributions (PHs) and Markov Arrival Processes (MAPs) promising stochastic model candidates for capturing traffic trace behaviour and for efficient usage in queueing analysis. After introducing basics of these sets of stochastic models, the paper discusses the following subjects in detail: (i) PHs and MAPs have different representations. For efficient use of these models, sparse (defined by a minimal number of parameters) and unique representations of discrete time PHs and MAPs are needed, which are commonly referred to as canonical representations. The paper presents new results on the canonical representation of discrete PHs and MAPs. (ii) The canonical representation allows a direct mapping between experimental moments and the stochastic models, referred to as moment matching. Explicit procedures are provided for this mapping. (iii) Moment matching is not always the best way to model the behavior of traffic traces. Model fitting based on appropriately chosen distance measures might result in better performing stochastic models. We also demonstrate the efficiency of fitting procedures with experimental results.
Keywords: fitting traffic traces, discrete phase type distribution, discrete Markov arrival process, canonical representation
Mots-clés : rozkład fazowy, proces Markowa, przedstawienie kanoniczne
@article{IJAMCS_2014_24_3_a0,
     author = {M\'esz\'aros, A. and Papp, J. and Telek, M.},
     title = {Fitting traffic traces with discrete canonical phase type distributions and {Markov} arrival processes},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {453--470},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a0/}
}
TY  - JOUR
AU  - Mészáros, A.
AU  - Papp, J.
AU  - Telek, M.
TI  - Fitting traffic traces with discrete canonical phase type distributions and Markov arrival processes
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2014
SP  - 453
EP  - 470
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a0/
LA  - en
ID  - IJAMCS_2014_24_3_a0
ER  - 
%0 Journal Article
%A Mészáros, A.
%A Papp, J.
%A Telek, M.
%T Fitting traffic traces with discrete canonical phase type distributions and Markov arrival processes
%J International Journal of Applied Mathematics and Computer Science
%D 2014
%P 453-470
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a0/
%G en
%F IJAMCS_2014_24_3_a0
Mészáros, A.; Papp, J.; Telek, M. Fitting traffic traces with discrete canonical phase type distributions and Markov arrival processes. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 3, pp. 453-470. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_3_a0/

[1] Alfa, A. (2002). Discrete time queues and matrix-analytic methods, Top 10(2): 147–185.

[2] Bodrog, L., Heindl, A., Horv´ath, G. and Telek, M. (2008). A Markovian canonical form of second-order matrix-exponential processes, European Journal of Operation Research 190: 459–477.

[3] Horváth, G. and Telek,M. (2007). A canonical representation of order 3 phase type distributions, in K. Volter (Ed.), Formal Methods and Stochastic Models for Performance Evaluation, Springer, Berlin/Heidelberg, pp. 48–62.

[4] Horváth, G. and Telek, M. (2009). On the canonical representation of phase type distributions, Performance Evaluation 66(8): 396–409.

[5] Lakatos, L., Szeidl, L. and Telek, M. (2013). Introduction to Queueing Systems with Telecommunication Applications, Springer, New York, NY.

[6] Neuts, M. (1981). Matrix Geometric Solutions in Stochastic Models, Johns Hopkins University Press, Baltimore, MD.

[7] Telek, M. and Heindl, A. (2002). Matching moments for acyclic discrete and continuous phase-type distributions of second order, International Journal of Simulation Systems, Science Technology 3(3–4): 47–57.

[8] Telek, M. and Horváth, G. (2007). A minimal representation of Markov arrival processes and a moments matching method, Performance Evaluation 64(9–12): 1153–1168.