Disturbance modeling and state estimation for offset-free predictive control with state-space process models
International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 2, pp. 313-323.

Voir la notice de l'article provenant de la source Library of Science

Disturbance modeling and design of state estimators for offset-free Model Predictive Control (MPC) with linear state-space process models is considered in the paper for deterministic constant-type external and internal disturbances (modeling errors). The application and importance of constant state disturbance prediction in the state-space MPC controller design is presented. In the case with a measured state, this leads to the control structure without disturbance state observers. In the case with an unmeasured state, a new, simpler MPC controller-observer structure is proposed, with observation of a pure process state only. The structure is not only simpler, but also with less restrictive applicability conditions than the conventional approach with extended process-and-disturbances state estimation. Theoretical analysis of the proposed structure is provided. The design approach is also applied to the case with an augmented state-space model in complete velocity form. The results are illustrated on a 2 x 2 example process problem.
Keywords: model predictive control, state space model, disturbance rejection, state observer, Kalman filter
Mots-clés : sterowanie predykcyjne, model przestrzeni stanów, eliminacja zakłóceń, obserwator stanu, filtr Kalmana
@article{IJAMCS_2014_24_2_a6,
     author = {Tatjewski, P.},
     title = {Disturbance modeling and state estimation for offset-free predictive control with state-space process models},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {313--323},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a6/}
}
TY  - JOUR
AU  - Tatjewski, P.
TI  - Disturbance modeling and state estimation for offset-free predictive control with state-space process models
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2014
SP  - 313
EP  - 323
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a6/
LA  - en
ID  - IJAMCS_2014_24_2_a6
ER  - 
%0 Journal Article
%A Tatjewski, P.
%T Disturbance modeling and state estimation for offset-free predictive control with state-space process models
%J International Journal of Applied Mathematics and Computer Science
%D 2014
%P 313-323
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a6/
%G en
%F IJAMCS_2014_24_2_a6
Tatjewski, P. Disturbance modeling and state estimation for offset-free predictive control with state-space process models. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 2, pp. 313-323. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a6/

[1] Anderson, D. and Moore, J. (2005). Optimal Filtering, Dover Publications Inc, New York, NY.

[2] Astrom, K. and Wittenmark, B. (1997). Computer Controlled Systems, Prentice Hall, Upper Saddle River, NJ.

[3] Blevins, T.L., McMillan, G.K., Wojsznis, W.K. and Brown, M.W. (2003). Advanced Control Unleashed, The ISA Society, Research Triangle Park, NC.

[4] Blevins, T.L., Wojsznis, W.K. and Nixon, M. (2013). Advanced Control Foundation, The ISA Society, Research Triangle Park, NC.

[5] Camacho, E. and Bordons, C. (1999). Model Predictive Control, Springer Verlag, London.

[6] Doyle III, F., Ogunnaike, B. and Pearson, R. (1996). Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models, Automatica 32(9): 1285–1301.

[7] Gonzalez, A.H., Adam, E.J. and Marchetti, J.L. (2008). Conditions for offset elimination in state space receding horizon controllers: A tutorial analysis, Chemical Engineering and Processing 47(12): 2184–2194.

[8] Hesketh, T. (1982). State-space pole-placing self-tuning regulator using input-output values, IEE Proceedings, Part D 129(4): 123–128.

[9] Ławryńczuk, M. (2009). Efficient nonlinear predictive control based on structured neural models, International Journal of Applied Mathematics and Computer Science 19(2): 233–246, DOI: 10.2478/v10006-009-0019-1.

[10] Ławryńczuk, M. and Tatjewski, P. (2010). Nonlinear predictive control based on neural multi-models, International Journal of Applied Mathematics and Computer Science 20(1): 7–21, DOI: 10.2478/v10006-010-0001-y.

[11] Maciejowski, J. (2002). Predictive Control, Prentice Hall, Harlow.

[12] Maeder, U. and Morari, M. (2010). Offset-free reference tracking with model predictive control, Automatica 46(9): 1469–1476.

[13] Morari, M. and Maeder, U. (2012). Nonlinear offset-free model predictive control, Automatica 48(9): 2059–2067.

[14] Muske, K. and Badgwell, T. (2002). Disturbance modeling for offset-free linear model predictive control, Journal of Process Control 12(5): 617–632.

[15] Pannocchia, G. and Bemporad, A. (2007). Combined design of disturbance model and observer for offset-free model predictive control, IEEE Transactions on Automatic Control 52(6): 1048–1053.

[16] Pannocchia, G. and Rawlings, J. (2003). Disturbance models for offset-free model predictive control, AIChE Journal 49(2): 426–437.

[17] Prett, D. and Garcia, C. (1988). Fundamental Process Control, Butterworths, Boston, MA.

[18] Qin, S. and Badgwell, T. (2003). A survey of industrial model predictive control technology, Control Engineering Practice 11(7): 733–764.

[19] Rao, V. and Rawlings, J.B. (2009). Model Predictive Control: Theory and Design, Nob Hill Publishing, Madison, WI.

[20] Rossiter, J. (2003). Model-Based Predictive Control, CRC Press, Boca Raton, FL.

[21] Tatjewski, P. (2007). Advanced Control of Industrial Processes, Springer Verlag, London.

[22] Tatjewski, P. (2008). Advanced control and on-line process optimization in multilayer structures, Annual Reviews in Control 32(1): 71–85.

[23] Tatjewski, P. (2010). Supervisory predictive control and on-line set-point optimization, International Journal of Applied Mathematics and Computer Science 20(3): 483–495, DOI: 10.2478/v10006-010-0035-1.

[24] Tatjewski, P. (2011). Disturbance modeling and state estimation for predictive control with different state-space process models, Preprints of the 18th IFAC World Congress, Milan, Italy, pp. 5326–5331.

[25] Tatjewski, P. (2012). Modeling deterministic disturbances and state filtering in model predictive control with state-space models, in M. Busłowicz and K. Malinowski (Eds.), Advances in Control Theory and Automation, OWPB, Białystok, pp. 263–274.

[26] Tatjewski, P. and Ławryńczuk, M. (2006). Soft computing in model-based predictive control, International Journal of Applied Mathematics and Computer Science 16(1): 7–26.

[27] Wang, L. (2009). Model Predictive Control System Design and Implementation Using MATLAB, Springer Verlag, London.