Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_2_a6, author = {Tatjewski, P.}, title = {Disturbance modeling and state estimation for offset-free predictive control with state-space process models}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {313--323}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a6/} }
TY - JOUR AU - Tatjewski, P. TI - Disturbance modeling and state estimation for offset-free predictive control with state-space process models JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 313 EP - 323 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a6/ LA - en ID - IJAMCS_2014_24_2_a6 ER -
%0 Journal Article %A Tatjewski, P. %T Disturbance modeling and state estimation for offset-free predictive control with state-space process models %J International Journal of Applied Mathematics and Computer Science %D 2014 %P 313-323 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a6/ %G en %F IJAMCS_2014_24_2_a6
Tatjewski, P. Disturbance modeling and state estimation for offset-free predictive control with state-space process models. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 2, pp. 313-323. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a6/
[1] Anderson, D. and Moore, J. (2005). Optimal Filtering, Dover Publications Inc, New York, NY.
[2] Astrom, K. and Wittenmark, B. (1997). Computer Controlled Systems, Prentice Hall, Upper Saddle River, NJ.
[3] Blevins, T.L., McMillan, G.K., Wojsznis, W.K. and Brown, M.W. (2003). Advanced Control Unleashed, The ISA Society, Research Triangle Park, NC.
[4] Blevins, T.L., Wojsznis, W.K. and Nixon, M. (2013). Advanced Control Foundation, The ISA Society, Research Triangle Park, NC.
[5] Camacho, E. and Bordons, C. (1999). Model Predictive Control, Springer Verlag, London.
[6] Doyle III, F., Ogunnaike, B. and Pearson, R. (1996). Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models, Automatica 32(9): 1285–1301.
[7] Gonzalez, A.H., Adam, E.J. and Marchetti, J.L. (2008). Conditions for offset elimination in state space receding horizon controllers: A tutorial analysis, Chemical Engineering and Processing 47(12): 2184–2194.
[8] Hesketh, T. (1982). State-space pole-placing self-tuning regulator using input-output values, IEE Proceedings, Part D 129(4): 123–128.
[9] Ławryńczuk, M. (2009). Efficient nonlinear predictive control based on structured neural models, International Journal of Applied Mathematics and Computer Science 19(2): 233–246, DOI: 10.2478/v10006-009-0019-1.
[10] Ławryńczuk, M. and Tatjewski, P. (2010). Nonlinear predictive control based on neural multi-models, International Journal of Applied Mathematics and Computer Science 20(1): 7–21, DOI: 10.2478/v10006-010-0001-y.
[11] Maciejowski, J. (2002). Predictive Control, Prentice Hall, Harlow.
[12] Maeder, U. and Morari, M. (2010). Offset-free reference tracking with model predictive control, Automatica 46(9): 1469–1476.
[13] Morari, M. and Maeder, U. (2012). Nonlinear offset-free model predictive control, Automatica 48(9): 2059–2067.
[14] Muske, K. and Badgwell, T. (2002). Disturbance modeling for offset-free linear model predictive control, Journal of Process Control 12(5): 617–632.
[15] Pannocchia, G. and Bemporad, A. (2007). Combined design of disturbance model and observer for offset-free model predictive control, IEEE Transactions on Automatic Control 52(6): 1048–1053.
[16] Pannocchia, G. and Rawlings, J. (2003). Disturbance models for offset-free model predictive control, AIChE Journal 49(2): 426–437.
[17] Prett, D. and Garcia, C. (1988). Fundamental Process Control, Butterworths, Boston, MA.
[18] Qin, S. and Badgwell, T. (2003). A survey of industrial model predictive control technology, Control Engineering Practice 11(7): 733–764.
[19] Rao, V. and Rawlings, J.B. (2009). Model Predictive Control: Theory and Design, Nob Hill Publishing, Madison, WI.
[20] Rossiter, J. (2003). Model-Based Predictive Control, CRC Press, Boca Raton, FL.
[21] Tatjewski, P. (2007). Advanced Control of Industrial Processes, Springer Verlag, London.
[22] Tatjewski, P. (2008). Advanced control and on-line process optimization in multilayer structures, Annual Reviews in Control 32(1): 71–85.
[23] Tatjewski, P. (2010). Supervisory predictive control and on-line set-point optimization, International Journal of Applied Mathematics and Computer Science 20(3): 483–495, DOI: 10.2478/v10006-010-0035-1.
[24] Tatjewski, P. (2011). Disturbance modeling and state estimation for predictive control with different state-space process models, Preprints of the 18th IFAC World Congress, Milan, Italy, pp. 5326–5331.
[25] Tatjewski, P. (2012). Modeling deterministic disturbances and state filtering in model predictive control with state-space models, in M. Busłowicz and K. Malinowski (Eds.), Advances in Control Theory and Automation, OWPB, Białystok, pp. 263–274.
[26] Tatjewski, P. and Ławryńczuk, M. (2006). Soft computing in model-based predictive control, International Journal of Applied Mathematics and Computer Science 16(1): 7–26.
[27] Wang, L. (2009). Model Predictive Control System Design and Implementation Using MATLAB, Springer Verlag, London.