Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_2_a2, author = {Makowski, R. and Hossa, R.}, title = {Automatic speech signal segmentation based on the innovation adaptive filter}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {259--270}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a2/} }
TY - JOUR AU - Makowski, R. AU - Hossa, R. TI - Automatic speech signal segmentation based on the innovation adaptive filter JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 259 EP - 270 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a2/ LA - en ID - IJAMCS_2014_24_2_a2 ER -
%0 Journal Article %A Makowski, R. %A Hossa, R. %T Automatic speech signal segmentation based on the innovation adaptive filter %J International Journal of Applied Mathematics and Computer Science %D 2014 %P 259-270 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a2/ %G en %F IJAMCS_2014_24_2_a2
Makowski, R.; Hossa, R. Automatic speech signal segmentation based on the innovation adaptive filter. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 2, pp. 259-270. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a2/
[1] Almpanidis, G. and Kotropoulos, C. (2007). Phonetic segmentation using the generalized Gamma distribution and small sample Bayesian information criterion, Speech Communication 50(1): 38–55.
[2] Almpanidis, G., Kotti, M. and Kotropoulos, C. (2009). Robust detection of phone boundaries using model selection criteria with few observations, IEEE Transactions on Audio, Speech, and Signal Processing 17(2): 287–298.
[3] Barkat, M. (1991). Signal Detection and Estimation, Artech House, Boston, MA.
[4] Brandt, A.V. (1983). Detecting and estimating the parameters jumps using ladder algorithms and likelihood ratio test, Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Boston, MA, USA, pp. 1017–1020.
[5] Brugnara, F., Falavinga, D. and Omolongo, M. (1993). Automatic segmentation and labeling of speech based on hidden Markov models, Speech Communication 12(4): 357–370.
[6] Delacourt, P. and Wellekens, C.J. (2000). DISTBIC: A speaker-based segmentation for audio data indexing, Speech Communication 32(1–2): 111–126.
[7] Gomez, J.A. and Calvo, M. (2011). Improvements on automatic speech segmentation at the phonetic level, in C. San Martin and S.-W. Kim (Eds.), CIARP 2011, Lecture Notes in Computer Science, Vol. 7042, Springer-Verlag, Berlin/Heidelberg, pp. 557–564.
[8] Haykin, S. (1996). Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs, NJ.
[9] Jamouli, H., Al Hail, M.A. and Sauter, D. (2012). A mixed active and passive GLR test for a fault tolerant control system, International Journal of Applied Mathematics and Computer Science 22(1): 9–23, DOI: 10.2478/v10006-012-0001-1.
[10] Kay, S.M. (1988). Modern Spectral Estimation, Prentice-Hall, Englewood Cliffs, NJ.
[11] Kay, S.M. (1998). Fundamentals of Statistical Signal Processing, Vol. II: Detection Theory, Prentice-Hall, Englewood Clifft, NJ.
[12] Kroon, P. and Deprettere, E.F. (1988). A class of analysis-by-synthesis predictive coders for high quality speech coding at rates between 4.8 and 16 kbits/s, IEEE Journal on Selected Areas in Communications 6(2): 353–363.
[13] Lee, D.T.L., Morf, M. and Friedlander, B. (1981). Recursive least squares ladder estimation algorithms, IEEE Transactions on Circuits and Systems 28(6): 627–641.
[14] Lopatka, M., Adam, O., Laplanche, C., Zarzycki, J. and Motsch, J-F. (2005). Effective analysis of non-stationary short-time signals based on the adaptive Schur filter, IEEE/SP 13th Workshop on Statistical Signal Processing, Bordeaux, France, pp. 251–256.
[15] Lopatka, M., Adam, O., Laplanche, C., Motsch, J-F. and Zarzycki, J. (2006). Sperm whale click analysis using a recursive time-variant lattice filter, Applied Acoustics 67(11–12): 1118–1133.
[16] Makowski, R. and Zimroz, R. (2013). A procedure for weighted summation of the derivatives of reflection coefficients in adaptive Schur filter with application to fault detection in rolling element bearings, Mechanical Systems and Signal Processing 38(1): 65–77.
[17] Mporas, I., Ganchev, T. and Fakotakis, N. (2008). Phonetic segmentation using multiple speech features, International Journal of Speech Technology 11(1): 73–85.
[18] Park, S.S. and Kim, N.S. (2007). On using multiple models for automatic speech segmentation, IEEE Transactions on Audio, Speech, and Language Processing 15(8): 2202–2212.
[19] Prasad, V.K., Nagarajan, T. and Murthy, H.A. (2004). Automatic segmentation of continuous speech using minimum phase delay functions, Speech Communication 42(3–4): 429–446.
[20] Puig, V. (2010 ). Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies, International Journal of Applied Mathematics and Computer Science 20(4): 619–635, DOI: 10.2478/v10006-010-0046-y.
[21] Rabiner, L. and Gold, B. (1975). Theory and Application of Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ.
[22] Rabiner, L. and Juang, B-H. (1993). Fundamentals of Speech Recognition, Prentice-Hall, Englewood Cliffs, NJ.
[23] Rudoy, D., Quatieri, T.F. and Wolfe, P.J. (2011). Time-varying autoregressions in speech: Detection theory and applications, IEEE Transaction on Audio, Speech, and Language Processing 19(4): 977–989.
[24] Scharenborg, O., Wan, V. and Ernestus, M. (2010). Unsupervised speech segmentation: An analysis of the hypothesized phone boundaries, Journal of Acoustical Society of America 127(2): 1084–1095.
[25] Schwarz, P., Matejka, P. and Cernocky, J. (2006). Hierarchical structures of neural networks for phoneme recognition, IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France, Vol. 1, pp. 325–328.
[26] Sharma, M. and Mammone, R. (1996). Blind speech segmentation: Automatic segmentation of speech without linguistic knowledge, Proceedings of the International Conference on Spoken Language Processing, Philadelphia, PA, USA, pp. 1237–1240.
[27] Toledano, D.T., Hernandez Gomez, L.A. and Villarrubia Grande, L. (2003) Automatic phonetic segmentation, IEEE Transactions on Speech and Audio Processing 11(6): 617–625.
[28] Tyagi, V., Bourlard, H. and Wellekens, C. (2006). On variable-scale piecewise stationary analysis of speech signals for ASR, Speech Communication 48(9): 1182–1191.