Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_2_a15, author = {Wu, H. and Yan, S.}, title = {Bivariate {Hahn} moments for image reconstruction}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {417--428}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a15/} }
TY - JOUR AU - Wu, H. AU - Yan, S. TI - Bivariate Hahn moments for image reconstruction JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 417 EP - 428 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a15/ LA - en ID - IJAMCS_2014_24_2_a15 ER -
Wu, H.; Yan, S. Bivariate Hahn moments for image reconstruction. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 2, pp. 417-428. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a15/
[1] Campisi, P., Neri, A., Panci, G. and Scarano, G. (2004). Robust rotation-invariant texture classification using a model based approach, IEEE Transactions on Image Processing 13(6): 782–791.
[2] Dai, X., Shu, H., Luo, L., Han, G.N. and Coatrieux, J.L. (2010). Reconstruction of tomographic images from limited range projections using discrete Radon transform and Tchebichef moments, Pattern Recognition 43(3): 1152–1164.
[3] Dunkl, C.F. and Xu, Y. (2001). Orthogonal Polynomials of Several Variables, Cambridge University Press, Cambridge.
[4] Fujarewicz, K. (2010). Planning identification experiments for cell signaling pathways: An NFκB case study, International Journal of Applied Mathematics and Computer Science 20(4): 773–780, DOI: 10.2478/v10006-010-0059-6.
[5] Hu, M. (1962). Visual pattern recognition by moment invariants, IRE Transactions on Information Theory 8(2): 179–187.
[6] Iliev, P. and Xu, Y. (2007). Discrete orthogonal polynomials and difference equations of several variables, Advances in Mathematics 212(1): 1–36.
[7] Ismail, M., Foncannon, J. and Pekonen, O. (2008). Classical and quantum orthogonal polynomials in one variable, The Mathematical Intelligencer 30(1): 54–60.
[8] Mukundan, R., Ong, S. and Lee, P.A. (2001). Image analysis by Tchebichef moments, IEEE Transactions on Image Processing 10(9): 1357–1364.
[9] Nene, S., Nayar, S. and Murase, H. (1988). Columbia Object Image Library (coil 100) 1996, Ph.D. thesis, Columbia University, New York, NY.
[10] Papakostas, G., Karakasis, E. and Koulouriotis, D. (2010). Novel moment invariants for improved classification performance in computer vision applications, Pattern Recognition 43(1): 58–68.
[11] See, K., Loke, K., Lee, P. and Loe, K. (2007). Image reconstruction using various discrete orthogonal polynomials in comparison with DCT, Applied Mathematics and Computation 193(2): 346–359.
[12] Sroubek, F., Cristóbal, G. and Flusser, J. (2007). A unified approach to superresolution and multichannel blind deconvolution, IEEE Transactions on Image Processing 16(9): 2322–2332.
[13] Teague, M.R. (1980). Image analysis via the general theory of moments, Journal of the Optical Society of America A 70(8): 920–930.
[14] Wang, J.Z.,Wiederhold, G., Firschein, O. and Wei, S.X. (1997). Wavelet-based image indexing techniques with partial sketch retrieval capability, Proceedings of the IEEE International Forum on Research and Technology Advances in Digital Libraries, ADL 1997, Washington, DC, USA, pp. 13–24.
[15] Wang, Z. and Bovik, A.C. (2009). Mean squared error: Love it or leave it? A new look at signal fidelity measures, IEEE Signal Processing Magazine 26(1): 98–117.
[16] Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P. (2004). Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing 13(4): 600–612.
[17] Hunek, W.P and Latawiec, K.J. (2011). A study on new right/left inverses of nonsquare polynomial matrices, International Journal of Applied Mathematics and Computer Science 21(2): 331–348, DOI: 10.2478/v10006-011-0025-y.
[18] Xu, Y. (2004). On discrete orthogonal polynomials of several variables, Advances in Applied Mathematics 33(3): 615–632.
[19] Xu, Y. (2005). Second-order difference equations and discrete orthogonal polynomials of two variables, International Mathematics Research Notices 2005(8): 449–475.
[20] Yap, P.T., Paramesran, R. and Ong, S.H. (2003). Image analysis by Krawtchouk moments, IEEE Transactions on Image Processing 12(11): 1367–1377.
[21] Yap, P. T., Paramesran, R. and Ong, S. H. (2007). Image analysis using Hahn moments, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(11): 2057–2062.
[22] Zhang, D. and Lu, G. (2001). Content-based shape retrieval using different shape descriptors: A comparative study, Proceedings of the International Conference on Intelligent Multimedia and Distance Education, ICIMADE01, Fargo, ND, USA, pp. 1–9.
[23] Zhou, J., Shu, H., Zhu, H., Toumoulin, C. and Luo, L. (2005). Image analysis by discrete orthogonal Hahn moments, in J.S. Marques, N. Pérez de la Blanca and P. Pina (Eds.), Image Analysis and Recognition, Springer, Berlin/Heidelberg, pp. 524–531.
[24] Zhu, H. (2012). Image representation using separable two-dimensional continuous and discrete orthogonal moments, Pattern Recognition 45(4): 1540–1558.
[25] Zhu, H., Liu, M., Li, Y., Shu, H. and Zhang, H. (2011). Image description with nonseparable two-dimensional Charlier and Meixner moments, International Journal of Pattern Recognition and Artificial Intelligence 25(1): 37–55.
[26] Zhu, H., Liu,M., Shu, H., Zhang, H. and Luo, L. (2010). General form for obtaining discrete orthogonal moments, IET Image Processing 4(5): 335–352.
[27] Zhu, H., Shu, H., Zhou, J., Luo, L. and Coatrieux, J.L. (2007). Image analysis by discrete orthogonal dual Hahn moments, Pattern Recognition Letters 28(13): 1688–1704.
[28] Žunić, J., Hirota, K. and Rosin, P.L. (2010). A Hu moment invariant as a shape circularity measure, Pattern Recognition 43(1): 47–57.