Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_2_a14, author = {Liu, X. and Huang, L.}, title = {An efficient algorithm for adaptive total variation based image decomposition and restoration}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {405--415}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a14/} }
TY - JOUR AU - Liu, X. AU - Huang, L. TI - An efficient algorithm for adaptive total variation based image decomposition and restoration JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 405 EP - 415 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a14/ LA - en ID - IJAMCS_2014_24_2_a14 ER -
%0 Journal Article %A Liu, X. %A Huang, L. %T An efficient algorithm for adaptive total variation based image decomposition and restoration %J International Journal of Applied Mathematics and Computer Science %D 2014 %P 405-415 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a14/ %G en %F IJAMCS_2014_24_2_a14
Liu, X.; Huang, L. An efficient algorithm for adaptive total variation based image decomposition and restoration. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 2, pp. 405-415. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a14/
[1] Aujol, J.-F., Aubert, G., Blanc-Féraud, L. and Chambolle, A. (2005). Image decomposition into a bounded variation component and an oscillating component, Journal of Mathematical Imaging and Vision 22(1): 71–88.
[2] Aujol, J.-F., Gilboa, G., Chan, T. and Osher, S. (2006). Structure-texture image decomposition—modeling, algorithms, and parameter selection, International Journal of Computer Vision 67(1): 111–136.
[3] Aujol, J.-F. and Gilboa, G. (2006). Constrained and SNR-based solutions for TV-Hilbert space image denoising, Journal of Mathematical Imaging and Vision 26(1–2): 217–237.
[4] Barcelos, C.A.Z. and Chen Y. (2000). Heat flows and related minimization problem in image restoration, Computers Mathematics with Applications 39(5–6): 81–97.
[5] Cai, J.F., Osher, S. and Shen, Z. (2009). Split Bregman methods and frame based image restoration, CAM Report 09-28, UCLA, Los Angeles, CA.
[6] Chambolle, A. (2004). An algorithm for total variation minimization and application, Journal of Mathematical Imaging and Vision 20(1–2): 89–97.
[7] Chan, T.F., Golub, G.H. and Mulet, P. (1999). A nonlinear primal-dual method for total variation-based image restoration, SIAM Journal on Scientific Computing 20(6): 1964–1977.
[8] Chan, T.F., Esedoglu, S. and Park, F.E. (2007). Image decomposition combining staircase reducing and texture extraction, Journal of Visual Communication and Image Representation 18(6): 464–486.
[9] Chen, Y. and Wunderli, T. (2002). Adaptive total variation for image restoration in BV space, Journal of Mathematical Analysis and Applications 272(1): 117–137.
[10] Daubechies, I. and Teschke, G. (2005). Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring and denoising, Applied and Computational Harmonic Analysis 19(1): 1–16.
[11] Goldstein, T. and Osher, S. (2009). The split Bregman algorithm for L1 regularized problems, SIAM Journal on Imaging Sciences 2(2): 323–343.
[12] Hajiaboli, M.R. (2010). A self-governing fourth-order nonlinear diffusion filter for image noise removal, IPSJ Transactions on Computer Vision and Applications 2: 94–103.
[13] Jia, R.-Q., Zhao, H. and Zhao, W. (2009). Convergence analysis of the Bregman method for the variational model of image denoising, Applied and Computational Harmonic Analysis 27(3): 367–379.
[14] Liu, X. and Huang, L. (2010). Split Bregman iteration algorithm for total bounded variation regularization based image deblurring, Journal of Mathematical Analysis and Applications 372(2): 486–495.
[15] Liu, X., Huang, L. and Guo, Z. (2011). Adaptive fourth-order partial differential equation filter for image denoising, Applied Mathematics Letters 24(8): 1282–1288.
[16] Liu, X. and Huang, L. (2012). Total bounded variation based Poissonian images recovery by split Bregman iteration, Mathematical Methods in the Applied Sciences 35(5): 520–529.
[17] Liu, X. and Huang, L. (2013). Poissonian image reconstruction using alternating direction algorithm, Journal of Electronic Imaging 22(3): 033007.
[18] Liu, X. and Huang, L. (2014). A new nonlocal total variation regularization algorithm for image denoising, Mathematics and Computers in Simulation 97: 224–233.
[19] Meyer, Y. (2001). Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series, Vol. 22, AMS, Providence, RI.
[20] Ng, M.K., Yuan, X.M. and Zhang, W.X. (2013). A coupled variational image decomposition and restoration model for blurred cartoon-plus-texture images with missing pixels, IEEE Transactions on Image Processing 22(6): 2233–2246.
[21] Osher, S., Solé, A. and Vese, L. (2003). Image decomposition and restoration using total variation minimization and H−1 norm, Multiscale Modeling Simulation 1(3): 349–370.
[22] Prasath, V.B.S. (2011). A well-posed multiscale regularization scheme for digital image denoising, International Journal of Applied Mathematics and Computer Science 21(4): 769–777, DOI: 10.2478/v10006-011-0061-7.
[23] Rudin, L., Osher, S. and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms, Physica D 60(1–4): 259–268.
[24] Setzer, S., Steidl, G. and Teuber T. (2010). Deblurring Poissonian images by split Bregman techniques, Journal of Visual Communication and Image Representation 21(3): 193–199.
[25] Strong, D.M. and Chan, T.F. (1996). Spatially and scale adaptive total variation based regularization and anisotropic diffusion in image processing, CAMReport 96-46, UCLA, Los Angeles, CA.
[26] Szlam, A., Guo, Z. and Osher S. (2010). A split Bregman method for non-negative sparsity penalized least squares with applications to hyperspectral demixing, CAM Report 10-06, UCLA, Los Angeles, CA.
[27] Vese, L. and Osher, S. (2003). Modeling textures with total variation minimization and oscillating patterns in image processing, Journal of Scientific Computing 19(1–3): 553–572.
[28] Wang, Y., Yang, J., Yin, W. and Zhang, Y. (2007). A new alternating minimization algorithm for total variation image reconstruction, CAAM Technical Report, TR07–10, Rice University, Houston, TX.
[29] Zhang, X., Burger, M., Bresson, X. and Osher, S. (2009). Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, CAM Report 09-03, UCLA, Los Angeles, CA.