A robust computational technique for a system of singularly perturbed reaction–diffusion equations
International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 2, pp. 387-395.

Voir la notice de l'article provenant de la source Library of Science

In this paper, a singularly perturbed system of reaction–diffusion Boundary Value Problems (BVPs) is examined. To solve such a type of problems, a Modified Initial Value Technique (MIVT) is proposed on an appropriate piecewise uniform Shishkin mesh. The MIVT is shown to be of second order convergent (up to a logarithmic factor). Numerical results are presented which are in agreement with the theoretical results.
Keywords: asymptotic expansion approximation, backward difference operator, trapezoidal method, piecewise uniform Shishkin mesh
Mots-clés : rozwinięcie asymptotyczne, operator różnicowy, metoda trapezowa
@article{IJAMCS_2014_24_2_a12,
     author = {Kumar, V. and Bawa, R. K. and Lal, A. K.},
     title = {A robust computational technique for a system of singularly perturbed reaction{\textendash}diffusion equations},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {387--395},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a12/}
}
TY  - JOUR
AU  - Kumar, V.
AU  - Bawa, R. K.
AU  - Lal, A. K.
TI  - A robust computational technique for a system of singularly perturbed reaction–diffusion equations
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2014
SP  - 387
EP  - 395
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a12/
LA  - en
ID  - IJAMCS_2014_24_2_a12
ER  - 
%0 Journal Article
%A Kumar, V.
%A Bawa, R. K.
%A Lal, A. K.
%T A robust computational technique for a system of singularly perturbed reaction–diffusion equations
%J International Journal of Applied Mathematics and Computer Science
%D 2014
%P 387-395
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a12/
%G en
%F IJAMCS_2014_24_2_a12
Kumar, V.; Bawa, R. K.; Lal, A. K. A robust computational technique for a system of singularly perturbed reaction–diffusion equations. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 2, pp. 387-395. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a12/

[1] Bawa, R.K., Lal, A.K. and Kumar, V. (2011). An uniform hybrid scheme for singularly perturbed delay differential equations, Applied Mathematics and Computation 217(21): 8216–8222.

[2] Das, P. and Natesan, S. (2013). A uniformly convergent hybrid scheme for singularly perturbed system of reaction–diffusion Robin type boundary-value problems, Journal of Applied Mathematics and Computing 41(1): 447–471.

[3] Doolan, E.P., Miller, J.J.H. and Schilders, W.H.A. (1980). Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin.

[4] Farrell, P.E., Hegarty, A.F., Miller, J.J.H., O’Riordan, E. and Shishkin, G.I. (2000). Robust Computational Techniques for Boundary Layers, Chapman Hall/CRC Press, New York, NY.

[5] Madden, N. and Stynes, M. (2003). A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction–diffusion problems, IMA Journal of Numerical Analysis 23(4): 627–644.

[6] Matthews, S., Miller, J.J.H., O’Riordan, E. and Shishkin, G.I. (2000). Parameter-robust numerical methods for a system of reaction–diffusion problems with boundary layers, in G.I. Shishkin, J.J.H. Miller and L. Vulkov (Eds.), Analytical and Numerical Methods for Convection-Dominated and Singularly Perturbed Problems, Nova Science Publishers, New York, NY, pp. 219–224.

[7] Matthews, S., O’Riordan, E. and Shishkin, G.I. (2002). A numerical method for a system of singularly perturbed reaction–diffusion equations, Journal of Computational and Applied Mathematics 145(1): 151–166.

[8] Melenk, J.M., Xenophontos, C. and Oberbroeckling, L. (2013). Analytic regularity for a singularly perturbed system of reaction–diffusion equations with multiple scales, Advances in Computational Mathematics 39(2): 367–394.

[9] Miller, J.J.H., O’Riordan, E. and Shishkin, G.I. (1996). Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore.

[10] Natesan, S. and Briti, S.D. (2007). A robust computational method for singularly perturbed coupled system of reaction–diffusion boundary value problems, Applied Mathematics and Computation 188(1): 353–364.

[11] Nayfeh, A.H. (1981). Introduction to Perturbation Methods, Wiley, New York, NY.

[12] Rao, S.C.S., Kumar, S. and Kumar, M. (2011). Uniform global convergence of a hybrid scheme for singularly perturbedreaction–diffusion systems, Journal of Optimization Theory and Applications 151(2): 338–352.

[13] Roos, H.-G., Stynes, M. and Tobiska, L. (1996). Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin.

[14] Shishkin, G.I. (1995). Mesh approximation of singularly perturbed boundary-value problems for systems of elliptic and parabolic equations, Computational Mathematics and Mathematical Physics 35(4): 429–446.

[15] Sun, G. and Stynes, M. (1995). An almost fourth order uniformly convergent difference scheme for a semilinear singularly perturbed reaction–diffusion problem, Numerische Mathematik 70(4): 487–500.

[16] Valanarasu, T. and Ramanujam, N. (2004). An asymptotic initial-value method for boundary value problems for a system of singularly perturbed second-order ordinary differential equations, Applied Mathematics and Computation 147(1): 227–240.