Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_2_a12, author = {Kumar, V. and Bawa, R. K. and Lal, A. K.}, title = {A robust computational technique for a system of singularly perturbed reaction{\textendash}diffusion equations}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {387--395}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a12/} }
TY - JOUR AU - Kumar, V. AU - Bawa, R. K. AU - Lal, A. K. TI - A robust computational technique for a system of singularly perturbed reaction–diffusion equations JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 387 EP - 395 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a12/ LA - en ID - IJAMCS_2014_24_2_a12 ER -
%0 Journal Article %A Kumar, V. %A Bawa, R. K. %A Lal, A. K. %T A robust computational technique for a system of singularly perturbed reaction–diffusion equations %J International Journal of Applied Mathematics and Computer Science %D 2014 %P 387-395 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a12/ %G en %F IJAMCS_2014_24_2_a12
Kumar, V.; Bawa, R. K.; Lal, A. K. A robust computational technique for a system of singularly perturbed reaction–diffusion equations. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 2, pp. 387-395. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a12/
[1] Bawa, R.K., Lal, A.K. and Kumar, V. (2011). An uniform hybrid scheme for singularly perturbed delay differential equations, Applied Mathematics and Computation 217(21): 8216–8222.
[2] Das, P. and Natesan, S. (2013). A uniformly convergent hybrid scheme for singularly perturbed system of reaction–diffusion Robin type boundary-value problems, Journal of Applied Mathematics and Computing 41(1): 447–471.
[3] Doolan, E.P., Miller, J.J.H. and Schilders, W.H.A. (1980). Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin.
[4] Farrell, P.E., Hegarty, A.F., Miller, J.J.H., O’Riordan, E. and Shishkin, G.I. (2000). Robust Computational Techniques for Boundary Layers, Chapman Hall/CRC Press, New York, NY.
[5] Madden, N. and Stynes, M. (2003). A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction–diffusion problems, IMA Journal of Numerical Analysis 23(4): 627–644.
[6] Matthews, S., Miller, J.J.H., O’Riordan, E. and Shishkin, G.I. (2000). Parameter-robust numerical methods for a system of reaction–diffusion problems with boundary layers, in G.I. Shishkin, J.J.H. Miller and L. Vulkov (Eds.), Analytical and Numerical Methods for Convection-Dominated and Singularly Perturbed Problems, Nova Science Publishers, New York, NY, pp. 219–224.
[7] Matthews, S., O’Riordan, E. and Shishkin, G.I. (2002). A numerical method for a system of singularly perturbed reaction–diffusion equations, Journal of Computational and Applied Mathematics 145(1): 151–166.
[8] Melenk, J.M., Xenophontos, C. and Oberbroeckling, L. (2013). Analytic regularity for a singularly perturbed system of reaction–diffusion equations with multiple scales, Advances in Computational Mathematics 39(2): 367–394.
[9] Miller, J.J.H., O’Riordan, E. and Shishkin, G.I. (1996). Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore.
[10] Natesan, S. and Briti, S.D. (2007). A robust computational method for singularly perturbed coupled system of reaction–diffusion boundary value problems, Applied Mathematics and Computation 188(1): 353–364.
[11] Nayfeh, A.H. (1981). Introduction to Perturbation Methods, Wiley, New York, NY.
[12] Rao, S.C.S., Kumar, S. and Kumar, M. (2011). Uniform global convergence of a hybrid scheme for singularly perturbedreaction–diffusion systems, Journal of Optimization Theory and Applications 151(2): 338–352.
[13] Roos, H.-G., Stynes, M. and Tobiska, L. (1996). Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin.
[14] Shishkin, G.I. (1995). Mesh approximation of singularly perturbed boundary-value problems for systems of elliptic and parabolic equations, Computational Mathematics and Mathematical Physics 35(4): 429–446.
[15] Sun, G. and Stynes, M. (1995). An almost fourth order uniformly convergent difference scheme for a semilinear singularly perturbed reaction–diffusion problem, Numerische Mathematik 70(4): 487–500.
[16] Valanarasu, T. and Ramanujam, N. (2004). An asymptotic initial-value method for boundary value problems for a system of singularly perturbed second-order ordinary differential equations, Applied Mathematics and Computation 147(1): 227–240.